

For Public Disclosure

GE

Automation & Controls

Programmable Control Products

C Programmer's Toolkit for

PACSystems User's Manual GFK-

2259F

C Programmer's Toolkit
for PACSystems

User's Manual
GFK-2259F
October 2017

Legal Information

Warnings, Cautions, and Notes as Used in this Publication GFL-002

Warning

Warning notices are used in this publication to emphasize that hazardous
voltages, currents, temperatures, or other conditions that could cause personal
injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to
equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is
not taken.

Note: Notes merely call attention to information that is especially significant to understanding and

operating the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for
every possible contingency to be met during installation, operation, and maintenance. The information
is supplied for informational purposes only, and GE makes no warranty as to the accuracy of the
information included herein. Changes, modifications, and/or improvements to equipment and
specifications are made periodically and these changes may or may not be reflected herein. It is
understood that GE may make changes, modifications, or improvements to the equipment referenced
herein or to the document itself at any time. This document is intended for trained personnel familiar
with the GE products referenced herein.

GE may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not provide any license whatsoever to any of these patents.

GE provides the following document and the information included therein as-is and without warranty
of any kind, expressed or implied, including but not limited to any implied statutory warranty of
merchantability or fitness for particular purpose.

* indicates a trademark of General Electric Company and/or its subsidiaries.
All other trademarks are the property of their respective owners.

©Copyright 2002-2017 General Electric Company.
All Rights Reserved

Contact Information

If you purchased this product through an Authorized Channel Partner, please contact the seller directly.

General Contact Information

Online technical support and GlobalCare www.geautomation.com/support

Additional information www.geautomation.com

Solution Provider solutionprovider.ip@ge.com

Technical Support

If you have technical problems that cannot be resolved with the information in this manual, please contact us

by telephone or email, or on the web at www.geautomation.com/support

Americas

Phone 1-800-433-2682

International Americas Direct Dial 1-780-420-2010 (if toll free 800 option is unavailable)

Customer Care Email digitalsupport@ge.com

Primary language of support English

Europe, the Middle East, and Africa

Phone +800-1-433-2682

EMEA Direct Dial + 420-296-183-331 (if toll free 800 option is unavailable or if

dialing from a mobile telephone)

Customer Care Email digitalsupport.emea@ge.com

Primary languages of support English, French, German, Italian, Czech, Spanish

Asia Pacific

Phone +86-400-820-8208

+86-21-3877-7006 (India, Indonesia, and Pakistan)

Customer Care Email digitalsupport.apac@ge.com

Primary languages of support Chinese, Japanese, English

http://www.geautomation.com/support
http://support.ge-ip.com/
mailto:solutionprovider.ip@ge.com
http://support.ge-ip.com/
mailto:digitalsupport@ge.com
mailto:digitalsupport.emea@ge.com
mailto:digitalsupport.apac@ge.com

GFK-2259F October 2017 i

Table of Contents

C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Table of Contents.. i

Table of Figures .. v

Chapter 1 Introduction ... 1

1.1 Revisions in this Manual .. 2

1.2 Documentation .. 3

Chapter 2 Installation... 5

2.1 System Requirements .. 6

2.2 Installing the C Toolkit for PACSystems .. 7

2.2.1 To install the Toolkit ... 7

2.3 Running C Toolkit .. 8

2.4 C Toolkit File Structure ... 9

2.4.1 Directories ... 9
2.4.2 Files ... 9

2.5 Uninstalling C Toolkit ... 10

Chapter 3 Writing a C Application ... 11

3.1 Name Requirements ... 12

3.1.1 File Names ... 12
3.1.2 Reserved Names .. 12

3.2 C Applications in the PACSystems Environment ... 13

3.2.1 Developing a C Block ... 13
3.2.2 C Toolkit Variable Types .. 14
3.2.3 Compiling ... 16
3.2.4 Associating a Compiled C Block with the Application Program .. 19
3.2.5 Adding Blocks through the Machine Edition Programmer .. 19
3.2.6 Specifying Parameters .. 20
3.2.7 Scheduling C Blocks .. 21
3.2.8 Using a C Block in an LD or FBD Program .. 21
3.2.9 Using a C Block in an ST Program ... 21

3.3 PACSystems C Block Structure ... 22

3.3.1 Variable Declarations .. 23

Contents

ii PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.3.2 Stack Overflow Checking ... 23
3.3.3 Parameter Pointer Validation .. 25

3.4 PLC Reference Memory Access .. 26

3.4.2 How to Format a PLC Reference Access Macro .. 28
3.4.3 Bit Macros .. 29

3.4.4 Byte Macros .. 31
3.4.5 Integer/Word Macros ... 32
3.4.6 Double Word/Floating Point Macros ... 32
3.4.7 Double Precision Floating Point Macros .. 33
3.4.8 Reference Memory Size Macros ... 34
3.4.9 Transition, Alarm, and Fault Macros .. 35

3.5 Standard Library Routines .. 37

3.5.1 PACSystems Functions .. 37
3.5.2 General PLC Functions .. 38
3.5.3 Bus Read/Write Functions ... 46
3.5.4 BUS Semaphore Functions ... 55
3.5.5 Service Request Functions .. 60
3.5.6 Fault Table Service Request Functions ... 90
3.5.7 Module Communications ... 97
3.5.8 Ladder Function Blocks ... 98
3.5.9 Miscellaneous General Functions ... 103
3.5.10 Reference Memory Functions... 105
3.5.11 Utility Function .. 125
3.5.12 Errno Functions .. 126
3.5.13 PLC Variable Access ... 127

3.6 Application Considerations... 153

3.6.1 Application File Names ... 153
3.6.2 Floating Point Arithmetic ... 153
3.6.3 Available Reference Data Ranges .. 154
3.6.4 Global Variable Initialization .. 155
3.6.5 Static Variables ... 155
3.6.6 Data Retentiveness .. 156

3.6.7 GefMain() Parameter Declaration Errors for Blocks ... 157
3.6.8 Uninitialized Pointers ... 162
3.6.9 PLC Local Registers (%P and %L) .. 163
3.6.10 Block Enable Output (ENO) ... 165
3.6.11 Writes to %S Memory Using SB(x) .. 165
3.6.12 FST_EXE and FST_SCN Macros .. 165
3.6.13 LST_SCN Macro .. 165
3.6.14 Runtime Error Handling ... 166
3.6.15 C Application Impact on PLC Memory.. 166
3.6.16 Blocks as Timed or I/O Interrupt Blocks .. 167
3.6.17 Restricting Compilation to a Specific Target .. 168

Contents

GFK-2259F October 2017 iii

Chapter 4 Debugging and Testing C Applications ... 169

4.1 Testing C Applications in the PC Environment ... 169

4.2 Debugging C Applications in the PLC ... 172

4.2.1 Message Mode Debugging ...172
4.2.2 Reference Table Monitoring ...172

Chapter 5 Conversion Notes and Series 90 Compatibility ... 173

5.1 Series 90 Compatibility Header Files (PLCC9070.h and PLCC9030.h) 173

5.2 Writing Directly to Discrete Memory ... 174

5.3 PLC Target Library Function Compatibility Issues... 176

5.4 Compatibility Issues with Retentive Global Variables .. 176

5.5 “int” Type Issues ... 176

5.6 “enum” Type Issues ... 176

5.7 Non-Standard C Library Functions ... 176

5.8 Entry Point ... 176

5.9 C Standalone Programs .. 177

5.10 Use of Input Parameters as Pointers to Discrete Memory Tables 177

Chapter 6 Installed Sample Blocks ... 179

6.1 SampleProj1 .. 179

6.2 SampleProj2 .. 180

Contents

iv PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Appendix A Target Library Functions .. 181

A-1 Target Library Reference Memory Functions and Macros ... 181

A-2 Target Library Fault Table Functions, Structures and Constants .. 193

A-3 Target Library General Functions, Structures and Constants .. 198

A-4 Target Library VME Functions, Structures and Constants ... 208

A-5 Target Library Error Functions, Structures and Constants ... 210

A-6 Target Library Utility Functions, Structures and Constants .. 211

Appendix B C Run-Time Library Functions ... 213

Appendix C Diagnostics ... 225

C-1 Issue: Compiler issues the following warning when the EnableAnsi flag is used: 225

C-2 Issue: Compiler issues the following statement: warning: `HUGE_VAL’ redefined. 225

C-3 Issue: Compiler issues the following error statement: undefined reference to `isascii’ when
the EnableAnsi flag is used. In addition, the C Block will not store to the PLC. 226

C-4 Issue: On some Windows 2000 PCs, the local DOS Box Environment "path" variable is not
used, resulting in the compile process failing because the path to the compiler batch
file is not found. .. 226

Contents

GFK-2259F October 2017 v

Table of Figures

Figure 1: Example C Block Source File ___ 14
Figure 2: Invoking a C block from Ladder Program __ 14
Figure 3: C Block Parameters in Properties Page __ 20
Figure 4: Scheduling a C Block ___ 21
Figure 5: Calling a C Block from Program __ 21
Figure 6: Ladder Logic Calls to C Blocks ___ 22
Figure 7: Matching Parameters Between Call and C Block __ 24
Figure 8: Reserving Space for Unused Parameters to a C Block __ 25
Figure 9: Importance of Matching Parameter Type, Order, and Number ________________________________ 157
Figure 10: Interrupt Block Calls and C Blocks/FBKs ___ 167

file:///C:/Users/Public/Documents/GE%20Intelligent%20Platforms/Tech_Pubs/GFK-2259_C_Prog_Toolkit/GFK-2259F_CProg_Toolkit_20171031.docx%23_Toc497223008

GFK-2259F October 2017 1

Chapter 1 Introduction

This manual contains essential information about the construction of C applications for PACSystems control

systems. It is written for the experienced programmer who is familiar with both the C programming language

and with the operation of PACSystems control systems. For more information about PACSystems, refer to the

list of documents at the end of this chapter.

The PACSystems C Programmer’s Toolkit contains libraries, utilities, and documentation required to create C

applications for the PACSystems control system. C blocks are constructed using the ANSI C programming

language using text editing and toolkit applications on a personal computer. The C blocks are incorporated

into a PACSystems application program through Proficy® Machine Edition programming software. Using the

programming software, C blocks can be called from ladder logic or invoked by an I/O, module or timed

interrupt. In the programming software, use the Add C Block feature to insert C blocks.

The PACSystems CPU supports one type of C block, which has the capabilities of both the Series 90-70-type C

blocks and C function blocks. The PACSystems CPUs and the PACSystems C Toolkit do not support Standalone

C Programs, which is a feature of the Series 90-70.

A PACSystems C block is, by default, limited to 256Kbytes in size, provided there is sufficient PLC memory.

Examples of calculations that might be performed in C blocks include:

• Ramp/soak profiling

• Lead/lag calculation

• Message generation

• Input selection

• Arithmetic operations

• PID

• Sorting, moving and copying data

Chapter 1. Introduction

2 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

1.1 Revisions in this Manual

Rev Date Description

F Oct-

2017

▪ Updated for 64-bit C Blocks and compatible operating systems.

E Jan

2012

▪ General Update

D Jun

2008

▪ Additions to Chapter 3 and Appendix A.

Chapter 1. Introduction

GFK-2259F October 2017 3

1.2 Documentation

PACSystems Manuals

PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual GFK-2222

PACSystems RX7i, RX3i and RSTi-EP CPU Programmer’s Reference Manual GFK-2950

PACSystems RX7i, RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual GFK-2224

PACSystems Hot Standby CPU Redundancy User Manual GFK-2308

PACSystems Battery and Energy Pack Manual GFK-2741

Proficy Machine Edition Logic Developer Getting Started GFK-1918

Proficy Process Systems Getting Started Guide GFK-2487

PACSystems RXi, RX3i, RX7i and RSTi-EP Controller Secure Deployment Guide GFK-2830

RX3i Manuals

PACSystems RX3i System Manual GFK-2314

PACSystems RX3i PROFINET Controller Command Line Interface Manual GFK-2572

PACSystems RX3i Max-On Hot Standby Redundancy User’s Manual GFK-2409

PACSystems RX3i PROFINET Scanner Manual GFK-2737

PACSystems RX3i CEP PROFINET Scanner User Manual GFK-2883

PACSystems HART Pass Through User Manual GFK-2929

PACSystems RX3i PROFINET Scanner Important Product Information GFK-2573

VersaMax Manuals

VersaMax PROFINET Scanner Manual GFK-2721

In addition to these manuals, datasheets and product update documents describe individual modules and

product revisions. The most recent PACSystems documentation is available on the support website

www.geautomation.com.

.

http://support.ge-ip.com/

GFK-2259F October 2017 5

Chapter 2 Installation

This chapter explains how to install the PACSystems C Toolkit software on your personal computer.

This chapter provides the following information:

• What you will need to use the C Toolkit software

• Installing the C Toolkit for PACSystems

• Running the C Toolkit

• C Toolkit file structure

Chapter 2. Installation

6 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

2.1 System Requirements

To use the C Toolkit, you will need the following (at a minimum)1:

• PC: Pentium class processor, 166MHz or better

• RAM: 128MB, minimum

• Free Disk Space: 100MB, minimum

• Operating System:

Version Operating Systems Supported:

Earlier C Toolkit Releases such as 7.00 Windows® XP Professional (service pack 1 recommended) or

Windows® 2000 Professional (service pack 3 recommended)

C Toolkit Release 8.00 (64-bit support) Windows® 7/10 Professional

Note: The C Programmer’s Toolkit for PACSystems has not been qualified for use with the Windows Vista™

operating system.

1 More modern operating systems, such as Windows 10, specify PC and memory requirements which will exceed the

indicated minima.

Chapter 2. Installation

GFK-2259F October 2017 7

2.2 Installing the C Toolkit for PACSystems

This section describes how to install the C Toolkit software for PACSystems on your computer and how to set

up your computer to use the Toolkit.

Caution

Before installing the C Toolkit to the same directory as a previous
installation, you should first uninstall the previous version. Failure to do so
may cause the Toolkit to function incorrectly.

2.2.1 To install the Toolkit
1) Execute the setup.exe file.

2) Click the Next button. The next installation screen displays the default location where the Toolkit will

be installed: C:\GE Software\PACSystemsCToolkit.

You can change the install directory either by entering a directory path or by browsing to the desired

directory.

3) Click the Next button. The install program prompts you to create the installation directory if

necessary. The install program then asks if you want to proceed with the installation in the

designated directory.

4) To complete the installation, click the Start button. The install package installs the software and user

documentation components in the designated directory.

The installation program also installs an icon on your desktop.

When this operation is complete, the final installation screen is

presented. This screen provides the option for viewing the

readme.txt, which presents important start-up information.

5) Click Next.

6) To exit the installation program, click the Exit button. This launches the Toolkit, which brings up a DOS

box in the user project area. From the DOS box, you can navigate to your project directories and

compile C files. The initial screen will be similar to the example shown below:

Chapter 2. Installation

8 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

2.3 Running C Toolkit

To start the toolkit, double click the desktop icon (PACSystems(TM) C Toolkit)

or use the Start menu to execute the file ctkPACS.bat located at the Toolkit's

root directory.

In addition, you can also open an independent DOS window, navigate to the

directory containing the ctkPACS.bat file, run the ctkPACS.bat file, navigate

to your project and then compile the project.

Because the ctkPACS.bat file does not change the autoexec.bat file, the environment variables are only valid

for the life of the DOS window. This means that you can run another version of the toolkit on the same

machine without conflicts between the two packages because the environment variables are local to each

DOS window.

Chapter 2. Installation

GFK-2259F October 2017 9

2.4 C Toolkit File Structure

The file structure of the installed C Toolkit is shown below.

2.4.1 Directories

Bin contains the binary executable files used by C Toolkit.

Compilers contains the tools to compile and link your C Block file(s).

Docs contains local copies of user documentation in a standard format (html or pdf). To
navigate to the user documentation, double click the index.htm file located in the
root directory. The index.htm file provides links to the documentation on the Support
web site.

Projects can be used to contain your C Block projects and in addition contains sample C Block
projects.

Targets contains a target subdirectory and a debug subdirectory for each supported target.
The target subdirectories contain subdirectories for the C Run Time and Target
Library header files and compilation programs specifically needed for compiling C
Block files for that particular target. The debug subdirectories contain files needed to
compile and debug C Blocks on the PC using the Cygwin development environment.
The Targets directory also contains a CommonFiles subdirectory that contains files
common to more than one target.

2.4.2 Files

ctkPACS.bat opens a DOS box and sets up path and environment variables so that C Blocks can
be compiled from any location on your computer.

GNU.txt lists the locations of files covered by the GNU General Public License.

index.htm contains links to the user documentation.

license.txt contains the license information for the C Toolkit.

readme.txt indicates how to get to the readme file for a particular target. This is the only file
available in release 8.00 (64-bit).

readmePACRX.txt contains start-up information for PACs targets.

readmePACRX3i.txt contains start-up information for PAC RX3i targets.

readmePACRX7i.txt contains start-up information for PAC RX7i targets.

uninstall.exe removes the C Toolkit from your computer. Your project directories are not removed
during the uninstall process.

Chapter 2. Installation

10 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

2.5 Uninstalling C Toolkit

To uninstall the C Toolkit, execute the Uninstal.exe file.

This deletes all files created by the C Toolkit install program. Any new files that you have created in the

directory structure will remain as user project files.

GFK-2259F October 2017 11

Chapter 3 Writing a C Application

This chapter contains information needed to write C applications for the PACSystems control
system. It includes details on declaring parameters, accessing CPU reference memory, and using
standard library routines.

• Name Requirements page 12

• C Applications in the PACSystems Environment 13

• PACSystems C Block Structure 22

• PLC Reference Memory Access 26

• Standard Library Routines 37

• Application Considerations 153

Note: For information on testing and debugging C applications, refer to chapter 4. For information on

compatibility with Series 90-70 and Series 90-30 C applications and issues to be aware of when

converting C applications from 90-70 or 90-30 to PACSystems, refer to chapter 5.

The C source code used to build C applications may be created using the text editor of your choice,
provided that the output from your editor is compatible with the GNU C compiler. (Word processors
are not recommended for editing C source code.) In addition, your editor must properly handle both
DOS- and UNIX-type line feeds (Note that Notepad does not handle UNIX style line feeds and may
not display some C Toolkit files correctly).

It is also recommended that each C application be developed in its own subdirectory. One approach
would be to use the project subdirectory created when the C Toolkit was installed. As each
application is developed, a new subdirectory under the \Projects\ subdirectory is created: for
example,

Projects\Ramp

Projects\Limit

Projects\Press

etc.

Note: When migrating 32-bit C blocks to 64-bit C blocks, care must be taken. Consult coding practices for

migrating C code from 32-bit to 64-bit.

Chapter 3. Writing a C Application

12 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.1 Name Requirements

3.1.1 File Names
The filename of a C Block (for example, myCBlock.gefElf) (i.e. the string that precedes the extension)
must conform to Machine Edition block naming conventions (i.e. a maximum lenghth of 31
characters, first character must be a letter, no spaces). In addition, do not use the filename “Rel”.
This name is reserved by the C Toolkit (see Section 3.2.3.4 Compiling User C Blocks Under an Older
Toolkit Version).

Note: A compiled 32-bit C block has a .gefElf file extension, whereas a compiled 64-bit C block has a

.gefElf64 file extension. Examples in the text may use .gefElf, but .gefElf64 are substituted when

working with 64-bit C Blocks.

3.1.2 Reserved Names
To avoid C Toolkit and user naming conflicts, you should not use any of the following types of names
in your C Block application:

1. Names that begin with “GEF_”

2. Names that begin with a period “.”. For example, “.mydata”

Failure to follow these rules could result in compilation or store errors and possibly incorrect
operation.

Chapter 3. Writing a C Application

GFK-2259F October 2017 13

3.2 C Applications in the PACSystems Environment

3.2.1 Developing a C Block
For PACSystems, there is only one type of C Block and this block can be re-entrant if re-entrant
guidelines are followed. C Block source code is written using a text editor of choice (with restrictions
as outlined at the beginning of this chapter). In order to use the Target Library functions and macros,
you must use one of the following lines at top of the C file:

#include <PACRXPlc.h> /*For C blocks that run on any PACSystems PLC*/

#include <PACRX7iPlc.h> /*For C blocks that use features only available on an RX7i */

#include <PACRX3iPlc.h> /*For C blocks that use features only available on an RX3i */

Note: In the 90-70 there are two types of C blocks (C BLK & C FBK). The C BLK type cannot be re-entrant but

can make use of the C Run-Time library. The C FBK can be re-entrant but cannot use the C Run-Time

library.

A list of the Target Library functions and macros are listed in Appendix A.

To use the C Run-Time Library functions, you must include one of more of the following files as
appropriate at the top of the C file:

#include <stdio.h> /* Input/Output */

#include <math.h> /* Math */

#include <stdlib.h> /* Math, Data Conversion, Search */

#include <string.h> /* String Manipulation, Internationalization */

#include <time.h> /* Time */

#include <ctype.h> /* Character Classification and Conversion */

A list of the C Run-Time library functions supported by the PACSystems is provided in Appendix B.

The paths to these include files are set up when the C compiler runs, therefore the full paths are not
required in the “include” file names. After including the appropriate header files, you can write a C
block, using library calls as needed to implement the desired functionality. The C Block file or set of C
Block files must have one and only one function titled “GefMain” to act as the entry point. A brief
example is shown in Figure 1.

Chapter 3. Writing a C Application

14 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

/* myCFile.c */
#include <stdio.h>
#include <PACRXPlc.h>
T_INT32 status;
T_INT32 status2 = 1;
T_INT32 failCount = 0;
T_INT32 GefMain(T_INT16 *x1, T_INT16 *y1)
{
 if (*x1 != 0)
 {
 RW(10) = *x1; /*write x1 to %R10 as word */
 return GEF_EXECUTION_OK;
 }
 else
 {
 status = GEF_EXECUTION_ERROR;
 status2 = failCount;
 failCount++;
 return status;
 }
}

Figure 1: Example C Block Source File

The input parameters to the main block (x1 and y1) are derived from the input/output parameters in
the ladder program that calls the C Block. Input parameters are always passed as pointers. An
example is shown below:

Figure 2: Invoking a C block from Ladder Program

For this example, x1 points to the memory location of %R1 and y1 points to the memory location of
%R2. A return value of GEF_EXECUTION_OK enables power flow output from the C Block while a
return value of GEF_EXECUTION_ERROR results in no power flow from the output of the C Block.

3.2.2 C Toolkit Variable Types
To maintain portability and reduce errors, it is recommended that you use the basic types defined
by the header file ctkGefTypes.h and the files it includes. This file is located in the Toolkit subdirectory
Targets\CommonFiles\IncCommon. This file defines the recommended basic signed and unsigned
types from 8- or 64-bit quantities. These types are described below:

Chapter 3. Writing a C Application

GFK-2259F October 2017 15

Table 1. Variable Types

C Toolkit
Variable
Types

Description Corresponding
Programmer
Variable Type

Notes

T_BOOLEAN 8-bit type where 0 means
FALSE and non-zero
means TRUE. However
TRUE typically is set to a
value of 0x01

BOOL In the programmer/PLC, this type represents a single
bit.

Note: when passing a Boolean parameter to a C block,
the memory address of the PLC reference table
memory must be byte-aligned because the C
Block is passed a pointer to a Byte of reference
memory. The C user must then mask off and test
the least significant bit to get the Boolean state.

T_BYTE 8-bit unsigned type. BYTE

T_WORD 16-bit unsigned type WORD

T_DWORD 32-bit unsigned type DWORD

T_INT8 8-bit signed type NA

T_INT16 16-bit signed type INT Caution: Using “int” in the C source results in a
32-bit signed type that does not properly match the
programmer’s “INT” type.

T_INT32 32-bit signed type DINT

T_UINT8 8-bit unsigned type BYTE

T_UINT16 16-bit unsigned type UINT

T_UINT32 32-bit unsigned type DWORD

T_UINT64 64-bit unsigned type NA

T_REAL32 32-bit floating point type REAL This is equivalent to “float.”

T_REAL64 64-bit floating point type LREAL This is equivalent to “double.”

Table 2. Standard Basic Types Commonly Used for C Block Applications

C Toolkit
Variable
Types

Description Corresponding
Programmer
Variable Type

Notes

char 8-bit character NA Similar to a BYTE in programmer.

double 64-bit floating point LREAL

If you include the header file PLCC9070.h or PLCC9030.h, it equates Series 90 C Toolkit basic types
and the corresponding PACSystems C Toolkit basic types. This is shown in the following table:

Table 3. Relationship Between Series 90 and PACSystems Basic Types

90-30/90-70 Variable type Corresponding PACSystems C Toolkit Variable Type

byte T_BYTE

word T_WORD

dword T_DWORD

dint T_INT32

bflow T_BOOLEAN

Chapter 3. Writing a C Application

16 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.2.3 Compiling
After developing a C Block as described in Section 3.2.1, Developing a C Block, the C Block must be
compiled to create a relocateable object file that can be stored into the PLC.

3.2.3.1 Compiling a Single C File

To compile the C Block:

1) Start the C Toolkit by double clicking on the PACSystems C Toolkit icon on your desktop,
double clicking on the ctkPACS.bat file through Windows explorer or using the
Start->Programs menu.

2) In the C Toolkit DOS box, navigate to the project directory containing the C block file.

3) Type the appropriate compile command, followed by your file name.

• To compile a C Block that can be run on any PACSystems RX PLC, use the command:
compileCPACRX <file name>. This is the only command available for 64-bit C blocks.

• To compile a C Block that uses functionality that is available only on an RX3i, use the
command: compileCPACRX3i <file name>. Compatible with 32-bit C Blocks only.

• To compile a C Block that uses functionality that is available only on an RX7i, use the
command: compileCPACRX7i <file name>. Compatible with 32-bit C Blocks only.

For example, to run the RX7i compiler for a C file called “myCFile”, type:

 compileCPACRX7i myCFile

If there are errors or warnings, they are noted on the screen. If the compile is successful (no errors),
an output file is produced with the same base name as the input file and the extension “.gefElf”. The
file is placed in a subdirectory under your project directory called “plc” so that it is clear which file is
intended for downloading to the PLC. For the “myCFile” example, the following file is produced:

 myCFile.gefElf

myCFile.gefElf contains the compiled relocate-able code that is used by the PLC to load the C Block
into user memory.

See section 3.6.17, Restricting Compilation to a Specific Target if you want your C Block to always be
compiled for a specific target.

Chapter 3. Writing a C Application

GFK-2259F October 2017 17

3.2.3.2 Compiling Multiple C Files

If you want to have multiple C files compiled and linked together, you need to create a file called
“sources” and include a line that specifies the files to compile. This line must start with the word
“CFILENAMES=” (all capitals, no spaces) followed by the filenames (there can be multiple spaces or
tabs between “CFILENAMES=” and the first file and multiple spaces or tabs between each filename).
An example of this line is shown below:

CFILENAMES= myCFile1.c myCFile2.c myCFile3.c

If the list of files is long, a continuation symbol “\” may be added to improve readability in the file as
shown below:

CFILENAMES= myCFile1.c myCFile2.c \

 myCFile3.c

The “sources” file must be in the same project directory as the other C source files when compiling.

• To compile multiple C files into a C Block that can be run on any PACSystems RX PLC, use the
command: compileCPACRX.

• To compile multiple C files into a C Block that uses functionality that is available only on an
RX3i, use the command: compileCPACRX3i.

• To compile multiple C files into a C Block that uses functionality that is available only on an
RX7i, use the command: compileCPACRX7i.

For example, to compile multiple C files for a C Block that can be run on any PACSystems RX PLC
target, enter:

compileCPACRX

In this case, a file name is not given because the file name set comes from the “sources” file. The
name of the output file is the base name of the first file in the sources file list plus the “.gefElf“ or
“.gefElf64“ extension. For the example given above, the output file is: myCFile1.gefElf.

Again, this file will be located in the subdirectory “plc”. When working with multiple files, you will
need to add the keyword extern to any function or global variable that is referenced and declared in
another file. For example, if myCFile1 uses myFunction2 and myVar2 in myCFile2, myCFile1 must
declare these “extern” as shown below:

extern int myVar2;

extern void myFunction2(void);

Chapter 3. Writing a C Application

18 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.2.3.3 Specifying Compiler Options

You can specify the following compiler options by supplying keywords after the filename for the
single file case or setting flag1 and flag2 with one of the keywords in the sources file when
compiling multiple files:

1) Disable Stack Checking (Keyword = DisableStackCheck): this disables stack checking on every
user function call. This decreases C Block execution time but eliminates a check to determine if a
particular function call will overrun the user program stack which could lead to data corruption
and user program failure.

2) Enable ANSI compatibility (Keyword = EnableAnsi): this causes the compiler to enforce ANSI
standards such as the prevention of the use of the double slash for comments.

An example of a single file compile using these keywords is shown below:

compileCPACRX myCFile DisableStackCheck EnableAnsi

An example of a multiple file compile using these keywords is shown below. In a file with the name
“sources” include the following lines:

CFILENAMES= myCFile1.c myCFile2.c myCFile3.c

flag1 = DisableStackCheck

flag2 = EnableAnsi

To compile, type the following line in the DOS box in the same directory as the “sources” file:

CompileCPACRX

You can also link pre-compiled object files by using the following line in the “sources” file:

OFILENAMES=myCFile4.plcO

Multiple object files can be linked by placing space (spaces or TABS) between file names. In addition,
the file names can be on separate lines if the continuation slash is added at the end of the line as
shown below:

OFILENAMES=myCFile4.plcO myCFile5.plcO \

 MyCFile6.plcO

The following lines show an example of a “sources” file that compiles multiple C source files, multiple
object files and sets compile flags:

CFILENAMES= myCFile1.c myCFile2.c myCFile3.c

OFILENAMES=myCFile4.plcO myCFile5.plcO

flag1 = DisableStackCheck

flag2 = EnableAnsi

PLC object files can be created by using the flag DisableGefLibLink. To create myCFile4.plcO in the
current directory, type the following line:

compileCPACRX myCFile4 DisableGefLibLink

Chapter 3. Writing a C Application

GFK-2259F October 2017 19

3.2.3.4 Compiling User C Blocks Under an Older Toolkit Version

If you are developing C blocks for a PLC with an older firmware version, the C Toolkit allows the code
to be compiled under the limitations of an older C Toolkit version. You can specify the Toolkit release
on the command line (as the last two parameters) at the time the C block is compiled. If a version is
not specified, the C code will be compiled with the most recent version (newest feature set). For
example:

Normal command:

compileCPACRX myCFile OR compileCPACRX (assumes a “sources” file)

Release-specifying command example:

compileCPACRX myFile Rel 1_0 OR compileCPACRX Rel 1_0 (assumes a “sources” file)

In this example, the release specified in the second command is 1.0. Release numbers should be
preceded by the keyword “Rel” so that the compile batch file knows that “compileCPACRX Rel 1_0” is
meant to compile the C code specified in a sources file within the constraints of release 1.0 of the C
Toolkit. (The name of the file containing the user’s C code, if specified on the command line, cannot
be “Rel.”)

As of Release 5.00, the following revisions can be specified on the command line after the keyword
"Rel":

1_0
1_5
2_0
2_5
3_5

5_0

3.2.4 Associating a Compiled C Block with the Application Program
After the program is compiled, you must associate the *.gefElf file with a C Block in your PLC
program using the programmer. The C Block must have the same number of parameters as the
GefMain function’s input parameter signature as illustrated in Figure 1: Example C Block Source File

However, there is not a check to determine if the signatures match. In cases where the signatures
do not match, the C Block may not behave correctly.

3.2.5 Adding Blocks through the Machine Edition Programmer
Before importing the block into Machine Edition, the C application source file must be compiled and
linked to create the relocate-able version of the C application (*.gefElf).

Once the relocate-able version of a C application source file is created, the file needs to be added to
a target within your CME project as follows:

1) In the Project tab, expand the Logic node.

2) Right click the Program Block node under the Logic node.

3) Select Add C Block. This brings up a file navigation dialog box.

4) Navigate to the *.gefElf file and click the Open button to add the C Block to the folder.

Chapter 3. Writing a C Application

20 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.2.6 Specifying Parameters
To specify the parameters for a C Block with one or more input/output parameters, click on the C
Block. In the properties page for the C Block, click the Parameters item and then click on the button
provided. This opens the Parameters dialog box containing two tabs, one for inputs and one for
outputs. For each input/output, provide:

• Name

• Type (BOOL, BYTE, DINT, DWORD, INT, LREAL, REAL, UINT, WORD) (See Section 3.2.2, C Toolkit
Variable Types for information on how to map programmer/PLC types to C Toolkit types.)

• Length

Figure 3: C Block Parameters in Properties Page

Note: All parameters must be declared, even if some of them are NULL. (A NULL parameter may be used

when converting a 90-70 C Block to PACSystems.) To declare the parameter in Machine Edition, the

parameter must have both a type and a length. If the type is specified as NONE, with no length,

Machine Edition does not generate the parameter.

Chapter 3. Writing a C Application

GFK-2259F October 2017 21

3.2.7 Scheduling C Blocks
To schedule a C Block as a timed, I/O, or module Interrupt, click on the C Block. In the Properties
page for the C Block, click the Scheduling item and then click on the button provided. This opens the
Scheduling dialog box that allows you to select:

• Type: Timed, I/O, or Module Interrupt

• Trigger: I/O address for I/O or Module Interrupt

• Time Base: 0.001s, 0.01s, 0.1s, or 1s base for timed interrupts

• Interval: the number of time base units between timed interrupts

• Delay: initial delay before the timer starts for timed interrupts

Please note that only C blocks with no Input and Output parameters may be scheduled.

Figure 4: Scheduling a C Block

3.2.8 Using a C Block in an LD or FBD Program
To use a C Block in the ladder or function block
diagram program, place a Call instruction in the
desired location. Select the C block desired. If the
block has parameters, provide reference memory
locations for each input and output parameter.

To use a C block in an ST program, see below.

3.2.9 Using a C Block in an ST Program
You can call a C block from an ST program by using
a Block Call statement. A block call to a
parameterized C block can use either the informal or
formal convention.

Call to an unparameterized C block:

My_C_Block;

Call to a parameterized block using the informal convention:

My_C_Block(my_Input1, my_Input2, my_Output2, my_Output1);

Call to a parameterized block using the formal convention (parameters can be in any order):

My_C_Block(Out1 => my_Output1, In1 := my_Input1, In2 := my_Input2, Out2 => my_Output2);

Figure 5: Calling a C Block from Program

Chapter 3. Writing a C Application

22 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.3 PACSystems C Block Structure

A C block can be invoked in one of five ways:

1) As a sub-block of the main block.

2) As a sub-block of an LD, ST, or FBD block.

3) As a sub-block of an LD, ST, or FBD block with parameters (parameterized block).

4) As an I/O, timed, or module interrupt block.

5) As a sub-block of an interrupt block.

Blocks invoked as a sub-block of main, or as a sub-block of an interrupt block may have up to
sixty-three input and sixty-four output parameters. The input parameters do not have to be paired
with output parameters as required in the Series 90-70. Blocks invoked as an I/O, timed, or module
interrupt cannot have parameters. Shown below are two ladder logic rungs containing a C block
with zero parameters and a C Block with three input and three output parameters.

Figure 6: Ladder Logic Calls to C Blocks

Note: The Enable output (ENO) is present regardless of whether the block has parameters and is set based

on the function return result (either GEF_EXECUTION_OK or GEF_EXECUTION_ERROR). Each block is

written as a separate application that is linked and located during the program store process.

Appropriate definitions of GEF_EXECUTION_OK or GEF_EXECUTION_ERROR are given in the ctk.h file,
which is included by the header file PACRXPlc.h. The ctk.h file is located in the subdirectory
PACSystems CToolkit\Targets\CommonFiles\IncCommon. The gefElf file produced by the build
process of a block must be added to the program folder via CME using the Add C Block command.

The main function in each block must always be called GefMain. Any legal C declaration and code
may be used in a C block. The file PACRxPlc.h, installed as part of the C Toolkit, should be included in
the block source file(s). PACRxPlc.h contains or includes other files that contain declarations,
definitions, and macros used in writing blocks.

Chapter 3. Writing a C Application

GFK-2259F October 2017 23

The following example shows the basic components of a block with no parameters:

#include PACRXPLC.h /*PACSystems RX interface file*/

int GefMain ()

{

 /*value of function block ENO output determined by return value */

 return GEF_EXECUTION_OK;

}

3.3.1 Variable Declarations
Global and static variables may be used in a C block. The space allocated for them is taken from the
256K byte default space allowed for each block. Local, or automatic, variables are allocated on the
stack. PACSystems guarantees that a minimum of 5120 bytes is available on the stack before calling
a C block. If this amount of space is not available before calling the block, a diagnostic application
fault will be logged in the fault table.

3.3.2 Stack Overflow Checking
Stack overflow checking is enabled by default.

If C block stack checking is enabled when the block is built and the CPU detects that there is not
enough space available on the stack when calling a user function within a block, an application fault
will be logged in the controller fault table and the block will be exited at the point where the
potential stack overflow is detected. The block ENO output will be turned off. To resolve the problem,
you will need to evaluate if there is a problem in your application, such as a recursion (a block calling
itself) or increase the stack size. Stack size can be increased in 8K byte increments on the _MAIN
Block properties page in the programmer.

If C block stack checking is enabled when the block is built and the CPU detects the stack has
already overflowed when calling a user function within a C block, a fatal application fault will be
logged in the controller fault table and the PLC will be placed in Stop Faulted mode. In some cases,
such as when a function allocates a large amount of local or automatic variables in the stack, and
the stack depth is near the bottom of the stack, a page fault may occur and the CPU will be placed
in CPU halted mode.

If stack checking is disabled via the block build process and the application exceeds the allocated
stack space, a page fault may occur or the CPU may receive invalid data.

The order of the parameter declarations must match the CALL instruction parameter order, with the
input parameters followed by the output parameters. The declaration code shown below could be
used for a block that has two input and two output parameters.

Chapter 3. Writing a C Application

24 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Figure 7: Matching Parameters Between Call and C Block

int GefMain (X1, X2, Y1, Y2)

/*X1 - pointer to a single 16-bit integer */

T_INT16 *X1;

/*X2 - pointer to a 256-element array of integers */

T_INT16 X2[256];

/*Y1 - pointer to a structure containing a 16-bit integer */

/* and a floating-point variable */

struct

{

T_INT16 a;

T_REAL32 b;

} *Y1;

/*Y2 - pointer to an unsigned 16-bit integer */

T_WORD *Y2;

/* Body of GefMain function starts here */

It is not required that all of the CALL instruction parameters be used. If a CALL instruction parameter
is not used, a NULL pointer is passed as that parameter’s value. The parameter must still be
declared for the C Block in the programmer, so that subsequent parameters are lined up correctly
with their pointers. In the following example, a NULL pointer is passed in for the second and third
input parameters.

Chapter 3. Writing a C Application

GFK-2259F October 2017 25

Figure 8: Reserving Space for Unused Parameters to a C Block

int GefMain(x1, x2, x3, y1, y2, y3)
 T_INT16 *x1;
 T_INT16 *x2; /* placeholder for unused parameter, value is null */
 T_INT16 *x3; /* placeholder for unused parameter, value is null */
 T_INT16 *y1;
 T_INT16 *y2;
 T_INT16 *y3;
{
 *y1 = *x1; /* Copy value at x1 to y1 */
 *y2 = *x1 * 2; /* copy twice the value at x1 to y2 */
 *y3 = *x1 * 3; /* Copy three times the value at x1 to y3 */
 return(GEF_EXECUTION_OK)
}

3.3.3 Parameter Pointer Validation
The ladder logic program provides pointers to the variables that are passed into the block’s
GefMain () function. Since it is not required to provide variables for all input/output parameters, you
should check to make sure a pointer is not NULL before using it in your application. An example of
this NULL pointer checking is shown below:

int GefMain (T_INT16 *x1, T_INT16 *x2, T_INT16 *x3, T_INT16 *y2, T_INT16 *y3)
{
 /* Ensure that required parameters were provided by caller */
 if ((x1==NULL)||(x2==NULL)||(x3==NULL)||(y1==NULL)||(y2==NULL)||(y3==NULL))
 return(GEF_EXECUTION_ERROR);

 /* Required parameters are present. */
 *y1 = *x1; /* Copy value at x1 to y1 */
 *y2 = *x1 * 2; /* copy twice the value at x1 to y2 */
 *y3 = *x1 * 3; /* Copy three times the value at x1 to y3 */
 return(GEF_EXECUTION_OK)
}

Chapter 3. Writing a C Application

26 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.4 PLC Reference Memory Access

PACSystems reference address and diagnostic memory may be read and written directly via macros
defined in ctkRefMem.h, which is included with PACRx. Most of these macros consist of a string of
capitalized letters for non-discrete memory and Title Case for discrete memory, which indicate the
PACSystems reference type (and in some cases, the type of operation to be performed) followed by
the reference offset in parentheses. In general, PLC reference memories may be accessed via these
macros as bits, bytes (8-bit values), words (16-bit values), double words (32-bit values), single
precision floating point numbers (32 bits), or double precision floating point numbers (64 bits).

Caution

Use extreme caution with the following discrete macros. These macros
directly access discrete memory without taking into account corresponding
override and transition memory. .

%Ib (x) %Iw (x) %Ii (x) %Id (x)

%Qb (x) %Qw (x) %Qi (x) %Qd (x)

%Mb (x) %Mw (x) %Mi (x) %Md (x)

%Tb (x) %Tw (x) %Ti (x) %Td (x)

%Gb (x) %Gw (x) %Gi (x) %Gd (x)

%Sb (x) %Sw (x) %Si (x) %Sd (x)

%SAb (x) %SAw (x) %SAi (x) %SAd (x)

%SBb (x) %SBw (x) %SBi (x) %SBd (x)

%SCb (x) %SCw (x) %SCi (x) %SCd (x)

Note: This behavior is different from the Series 90-70 and Series 90-30 C feature.

Potential consequences:

• Inputs, outputs or internal discrete memory (for example %M) that are overridden (forced) to
a particular state can change to the opposite of the overridden state if a write operation is
performed using these macros.

• Transitions on discrete memory will not be detected, potentially affecting transition sensitive
logic.

Alternatives:

• Use the following functions to write to discrete memory: WritePLCByte, WritePLCWord,
WritePLCINT, WritePLCDint, PLMemCopy, SetBit, ClearBit, WritePLCDouble.

Chapter 3. Writing a C Application

GFK-2259F October 2017 27

The complete set of reference type designators are as follows:

Reference Type Description

%I Discrete input references (use only for reading reference memory)

%Q Discrete output references (use only for reading reference memory)

%M Discrete internal references (use only for reading reference memory)

%T Discrete temporary references (use only for reading reference memory)

%G Discrete global data references (use only for reading reference memory)

%S Discrete system references (use only for reading reference memory)

%SA Discrete maskable fault references

%SB Discrete non-maskable fault references

%SC Discrete fault summary references

%AI Analog input registers

%AQ Analog output registers

%R System register references

%W Bulk memory references

%P Program registers (use to store program data from main)

%L Local registers (use to store program data unique to a block)

Chapter 3. Writing a C Application

28 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.4.2 How to Format a PLC Reference Access Macro
The table shown below gives the modifiers used with the PLC reference macros (listed in Appendix
A). The format for usage of these macros is as follows:

The letter of reference type, followed by one of the modifiers followed by a parenthetical number for
the address you wish to access; e.g.,

RI(1)=3; This assigns the integer value 3 to %R00001
RW(2)=0x55AA; This assigns the word value 55AAh to %R00002

The data type modifiers are as follows:

Modifier Description

B Unsigned byte reference (8 bits, 0 -> 255)

W Word reference (16 bits, 0 -> 65535)

I Integer reference (signed 16 bits, -32768 -> 32767)

D Double precision integer reference (signed 32 bits, -2147483648 -> 2147483647)

F Floating point reference (32-bit IEEE floating point format)

Dbl Double precision floating point reference (64-bit IEEE floating point format)

Certain combinations of reference type designators and data type modifiers are not supported.
Those combinations that are supported have macros defined in the ctkRefMem.h file. Refer to
Appendix A, Section A-1 for the complete set of macros provided.

Macros that permit access to reference memories as bits are slightly different from macros that
access the same reference memories as bytes, words, double words, and/or floating-point numbers.
Bit access macros, byte access macros, word/integer access macros, word-memories-as-bytes
access macros, and double word/floating point access macros are described on the following pages
of this chapter.

Chapter 3. Writing a C Application

GFK-2259F October 2017 29

3.4.3 Bit Macros
There are three bit macros defined for each reference memory type:

Macro Description

BIT_TST_X Tests the specified bit

BIT_SET_X Sets the specified bit

BIT_CLR_X Clears the specified bit

References in a C application to %I would use BIT_TST_I(), BIT_CLR_I(), or BIT_SET_I(). The macro
name indicates that %I reference memory is to be operated on and the operation is tested (TST),
cleared (CLR), or set (SET). The value contained in parentheses is the reference number of the item to
be tested, cleared, or set (for example, 120 for %I120). The bit set and bit clear macros are separate
C application source statements.

Note: The bit test macros return a Boolean value contained in a byte. The accessed bit is right justified (least

significant bit) in the byte, that is, each of the bit test macros will evaluate to 0 if the bit is OFF or 1 if

the bit is ON.

The C application shown below will set %Q137, %M29, and %T99 if %I120 is ON and will clear
%Q137, %M29, and %T99 if %I120 is OFF:

Example:

#include “PACRXPlc.h”

int GeFMain() {
 if (BIT_TST_I(120)) {
 BIT_SET_Q(137);
 BIT_SET_M(29);
 BIT_SET_T(99);
 } else {
 BIT_CLR_Q(137);

 BIT_CLR_M(29);
 BIT_CLR_T(99);
 }
 return(GEF_EXECUTION_OK);
}

The bit macros for accessing word-oriented PLC memories (%R, %W, %P, %L, %AI, and %AQ) as bits
are similar to the above description except that these macros require one additional parameter,
namely, the position within the word of the bit being accessed. The three forms of bit macros for
accessing word-oriented PLC memory are BIT_SET_, BIT_CLR_, and BIT_TST_ (to specify the type of
operation) followed by R, W, P, L, AI, or AQ (to specify the PLC reference memory to be used). There
are two required parameters to these macros:

1) The word in the reference memory to access (1 to highest reference available in the
specified PLC memory).

2) The bit in the selected word to use (bit numbers 1 to 16, with bit 1 being the least significant
or rightmost bit).

To illustrate the bit macros for word-oriented memory, consider the following section of a C
application:

Chapter 3. Writing a C Application

30 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

if (BIT_TST_R(135, 6))
 BIT_SET_P(13, 4);
else
 BIT_CLR_AI(2,1);

This portion of a C application checks the sixth bit in %R135. If the bit is on (1), then the fourth bit in
%P13 is to be set ON (1); otherwise, the first bit in %AI2 is to be set OFF (0).

Note: The “BIT_” macros used to access bits in word-oriented memories use a 1- to 16-bit numbering

scheme, with bit 1 being the least significant bit and bit 16 being the most significant bit.

Chapter 3. Writing a C Application

GFK-2259F October 2017 31

3.4.4 Byte Macros
Macros are provided to read the PLC bit memories as bytes. These macros are Ib(x), Qb(x), Mb(x),
Tb(x), Gb(x), Sb(x), SAb(x), SBb(x), and SCb(x).

Caution

Use extreme caution with the following discrete macros. These macros
should not be used to write directly to discrete memory because they do not
take into account corresponding override and transition memory. For
details, refer to Section 3.4, PLC Reference Memory Access.

The parameter x in each of these macros should be replaced with the reference address of a bit
which is contained in the byte; for example, if the byte containing %M123 is needed, use Mb(123).
The byte access macros should only be used on the right-hand side of a C statement (read
operation only).

The example that follows sets the variable MyVar equal to the byte starting at %Q65 and ending at
%Q72.

Example:

#include “PACRxPlc.h”

int GeFMain() {
 T_BYTE MyVar;

 MyVar = Qb(72);

 return(GEF_EXECUTION_OK);
}

Accessing bytes from word-oriented memories (%R, %W, %P, %L, %AQ, and %AI) requires an
additional parameter to indicate which byte is to be read or written. The symbols HIBYTE and
LOBYTE are defined in PACRxPLC.h for this purpose. For example, your C application requires that
the low byte of %R5 be read into a C application local variable and then copied into the high byte of
%R17:

Example:

#include “PACRxPLC.h”

int GefMain() {
 T_BYTE abytvar;

 abytvar = RB(5,LOBYTE); /* read low byte of %R5 */
 RB(17,HIBYTE) = abytvar; /* write high byte of %R17 */

 return(GEF_EXECUTION_OK);
}

Chapter 3. Writing a C Application

32 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.4.5 Integer/Word Macros
All PLC reference memories may be accessed as 16-bit 2’s complement integers (T_INT16) or as
16-bit unsigned integers (T_WORD). As an example, a C application needs to read %R123 as an
unsigned 16-bit integer and write %P13 as a 2’s complement 16-bit integer and store the values in
separate local C source variables:

Example:

 #include “PACRxPLC.h ”

int GefMain () {
 T_WORD word_val;
 T_INT16 int_val = -133;

 word_val = RW(123);/* read %R123 as a word */
 PI(13) = int_val; /* copy 2’s complement integer to %P00013 */
 .
 return(GEF_EXECUTION_OK);
}

3.4.6 Double Word/Floating Point Macros
All PLC reference memories may be accessed as 32-bit signed integers (T_INT32), but only the word-
oriented memories (%R, %W, %P, %L, %AQ, and %AI) may be accessed as 32-bit floating point
numbers (T_REAL32). As an example, a C application needs to read %R77 as a 32-bit integer and
write a single precision floating point value to %P6.

Example:

#include “PACRXPlc.h”

GefMain() {
 T_INT32 T_INT32_val;
 T_REAL32 fp_val = 15.56;

 INT21_val = RD(77); /* read %R77 as a 32-bit integer */
 PF(6) = fp_val; /* write %P6 as single precision floating point */.
 return(GEF_EXECUTION_OK);
}

Chapter 3. Writing a C Application

GFK-2259F October 2017 33

3.4.7 Double Precision Floating Point Macros
Word-oriented PLC reference memories (%AI, %AQ, %L, %P, %R, %W) may be accessed as 64-bit
floating point values (T_REAL64). As an example, a C application needs to read the LREAL variable in
%R101 and write that value to the LREAL variable at %W50.

Example:

#include “PACRXPlc.h”

GefMain() {

 T_REAL64 lreal_value;

 lreal_value = RDbl(101);

 WDbl(50) = lreal_value;

}

Chapter 3. Writing a C Application

34 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.4.8 Reference Memory Size Macros
Macros are defined in ctkRefMem.h for determining the size of each memory type. These macros
are in the form X_SIZE, where X is the memory type letter I, Q, M, T, G, S, R, W, AI, AQ, P, or L. Each of
these size macros returns an unsigned integer value equal to the highest reference available in the
specified reference memory. If the last available reference in the %I table is %I32768, when a C
application uses the I_SIZE macro, the value 32768 will be returned.

Caution

The reference memory size macros should be used to determine the size of
the memory types written within a C application. Reads and writes outside
of the configured range can result in incorrect data or PLC CPU failure. A
safer alternative is to use read/write PLC functions that perform address
boundary checking. These functions are: WritePlcByte, WritePlcWord,
WritePlcInt, WritePlcDint, PlcMemCopy, SetBit, ClearBit, ReadPlcByte,
ReadPlcWord, ReadPlcInt, ReadPlcDint.

For example, a C application is created that takes an index as a single input parameter into the
register table. The application is designed to index into the register table using the input parameter
and copy the located value to the single output location (MOVE from source array registers [input
parameter] to output parameter). This C application is to be designed so that it may be run on any
PACSystems CPU, regardless of differing register memory table sizes:

Example:

#include “PACRxPlc.h”

int GefMain(T_WORD *X1, T_INT16 *Y1) {
 if ((X1 != NULL)&& (Y1 != NULL)) {
 if (*X1 > R_SIZE) {
 /* Index into registers is too large! */
 return(ERROR);
 } else {
 /* Index into registers and copy value to output parameter*/
 *Y1 = RI(*X1);
 }

 return(GEF_EXECUTION_OK);
 }
 else return (GEF_EXECUTION_ERROR);
}

Chapter 3. Writing a C Application

GFK-2259F October 2017 35

3.4.9 Transition, Alarm, and Fault Macros
Transition, alarm, and fault bits associated with reference memory can also be referenced. In
addition, the special system %S contacts FST_SCN, LST_SCN, T_10MS, T_100MS, T_SEC, T_MIN,
ALW_ON, ALW_OFF, SY_FULL, and IO_FULL are supported for C blocks.

The FST_EXE macro is supported. This is high (1) the first time a block is executed. C Blocks and
Parameterized Blocks inherit FST_EXE from the calling block. Interrupt blocks (C, LD, FBD or ST)
inherit FST_EXE from the _MAIN block.

The following macros are available for a PACSystems folder:

3.4.9.1 Transition and Alarm Macros

Macros for accessing the %I, %Q, %M, %T, %G, %S, and %SA - %SC transition bits

Note: A transition bit is set high (1) if consecutive writes to a reference bit results in the bit transitioning from

a 0 to 1 or 1 to 0. The bit is cleared (0) if consecutive writes to a reference bit result in the bit staying at

the same state (0 to 0, 1 to 1, for example).

BIT_TST_I_TRANS(x)
BIT_TST_Q_TRANS(x)
BIT_TST_M_TRANS(x)
BIT_TST_T_TRANS(x)
BIT_TST_G_TRANS(x)
BIT_TST_S_TRANS(x)
BIT_TST_SA_TRANS(x)
BIT_TST_SB_TRANS(x)
BIT_TST_SC_TRANS(x)

Macros for accessing the %I, %Q, %M, %T, %G, %S, and %SA - %SC transition bits as
bytes

IB_TRANS(x)
QB_TRANS(x)
MB_TRANS(x)
TB_TRANS(x)
GB_TRANS(x)
SB_TRANS(x)
SAB_TRANS(x)
SBB_TRANS(x)
SCB_TRANS(x)

Macros for accessing the %I, %Q, %AI, %AQ Diagnostic memory

Definitions used with macros that access Analog Input DIAGNOSTIC memory(s)

HI_ALARM_MSK 0x02
LO_ALARM_MSK 0x01
AI_OVERRANGE_MSK 0x08
AI_UNDERRANGE_MSK 0x04

Definitions used with macros that access Analog Output DIAGNOSTIC memory(s)

AQ_OVERRANGE_MSK 0x40
AQ_UNDERRANGE_MSK 0x20

Chapter 3. Writing a C Application

36 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Diagnostic memory macros

Note: Discrete diagnostic memory is organized so that there is one fault bit per discrete memory location.

Analog diagnostic memory is organized so that there is one byte of memory for each analog input or

output channel (for example there is one diagnostic byte associated with the analog input %AQ1). For

analog diagnostic memory, use the mask definitions above to determine the type of analog fault for a

particular analog input or output channel.

BIT_TST_I_DIAG(x)
BIT_TST_Q_DIAG(x)
IB_DIAG(x)
QB_DIAG(x)
AIB_DIAG(x)
AQB_DIAG(x)
AI_HIALRM(x)
AI_LOALRM(x)

Note: AIB_FAULT and AQB_FAULT are non-zero for conditions that set a fault contact or generate a fault

entry in the I/O fault table such as Overrange, Underrange.

AIB_FAULT(x)
AQB_FAULT(x)
AI_OVERRANGE(x)
AI_UNDERRANGE(x)
AQ_OVERRANGE(x)
AQ_UNDERRANGE(x)

Macros for accessing RACK/SLOT/BLOCK fault information

See descriptions of the corresponding functions in Section 3.5.10, Reference Memory Functions.

Macro Name page

RACKX(r) rackX(r) 120

SLOTX(r,s) slotX(r,s) 121

BLOCKX(r,s,b,sba) blockX(r,s,b,sba) 122

RSMB(x) rsmb(x) 123

Chapter 3. Writing a C Application

GFK-2259F October 2017 37

3.5 Standard Library Routines

Appendix A contains a complete list of the standard C library routines supported by C blocks. The
routines implement ANSI C functionality unless otherwise noted.

The printf function is not supported. You should use the message mode functions described later in
this section to access the PLC serial port.

3.5.1 PACSystems Functions
Additional functions are provided by the C Toolkit in support of the PACSystems CPU’s operations.
These functions are defined in the header file included by PACRxPLC.h. These header files are:

Header File Functions Page

ctkPlcBus.h Bus Read/Write Functions 46

ctkPlcErrno.h Errno Functions 126

ctkPlcFault.h Fault Table Service Request Functions 90

ctkPlcFunc.h

General PLC Functions 38

Miscellaneous General Functions 103

Service Request Functions 60

ctkPlcUtil.h Utility Function 125

ctkRefMem.h Reference Memory Functions 105

ctkVariables.h PLC Variable Access 127

These files are located in the following subdirectory:
 PACSystemsCtoolkit\Targets\CommonFiles\IncCommon

Descriptions of the functions are provided in the sections that follow.

Chapter 3. Writing a C Application

38 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.2 General PLC Functions
The following functions make PLC features available to C applications. These functions are
described in ctkPlcFunc.h.

3.5.2.1 PLCC_read_elapsed_clock

T_INT32 PLCC_read_elapsed_clock (struct elapsed_clock_rec *pElapsedClockRec);

struct elapsed_clock_rec {
 T_DWORD seconds
 T_WORD hundred µsecs;
};

Description

This function returns the current time from the PLC in memory pointed to by pElapsedClockRec,
which is the time since the PLC powered up.

InParam pElapsedClockRec

Pointer to structure containing the value of the PLC's elapsed clock

ReturnVal

The return value is 0 if successful, -1 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 39

3.5.2.2 PLCC_read_nano_elapsed_clock

T_INT32 PLCC_read_nano_elapsed_clock (struct nano_elapsed_clock_rec

 *pNanoElapsedClockRec);

struct nano_elapsed_clock_rec {
 T_DWORD seconds
 T_DWORD nanoseconds;
};

Description

This function returns the current time, in nanosecond units, from the PLC in memory pointed to by
pNanoElapsedClockRec, which is the time since the PLC powered up.

InParam pNanoElapsedClockRec

Pointer to structure containing the value of the PLC's elapsed clock in nanosecond units.

ReturnVal

The return value is 0 if successful, -1 if unsuccessful.

3.5.2.3 PLCC_chars_in_printf_q

Obsolete: Use Proc PLCC_CharsInMessageWriteQ function.

T_INT32 PLCC_chars_in_printf_q(void);

This function returns GEF_NOT_SUPPORTED.

Chapter 3. Writing a C Application

40 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.2.4 PLCC_MessageWrite

T_INT32 PLCC_MessageWrite(T_INT32 port, char *buffer, T_INT32 numBytes);

#define PORT1 0
#define PORT2 1

Description

Writes to a serial port on the PLC.

InParam port

Indicates which PLC serial port to write (i.e. PORT1, PORT2).

InParam buffer

Pointer to the buffer of data to write to the serial port.

InParam numBytes

Number of bytes to write (up to MESSAGE_BUFFER_SIZE).

ReturnVal

If successful, returns the number of bytes written. This may be less than the number of bytes
requested if the write queue fills.

Returns -1 for a bad parameter or if message mode is not configured for the specified port.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 41

3.5.2.5 Proc PLCC_MessageRead

T_INT32 PLCC_MessageRead(T_INT32 port, char *buffer, T_INT32 numBytes);

Description

Reads from the serial port input queue on the PLC.

InParam port

Indicates which PLC serial port to read (i.e. PORT1, PORT2).

InParam buffer

Pointer to the buffer to place the data read from the input queue.

InParam numBytes

Number of bytes to read (up to MESSAGE_BUFFER_SIZE).

ReturnVal

If successful, returns the number of bytes read. This may be less than the number of bytes
requested if it is larger than the number of bytes in the read queue.

Returns -1 for a bad parameter or if message mode is not configured for the specified port.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

42 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.2.6 Proc PLCC_CharsInMessageWriteQ

T_INT32 PLCC_CharsInMessageWriteQ(T_INT32 port);

Description

Returns the number of bytes in the write queue.

InParam port

Indicates which PLC serial port to query (i.e. PORT1, PORT2).

ReturnVal

If successful, returns the number of bytes in the queue.

Returns -1 for a bad parameter or if message mode is not configured for the specified port.

Errno

If there is an error, Errno is set by this function to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 43

3.5.2.7 Proc PLCC_CharsInMessageReadQ

T_INT32 PLCC_CharsInMessageReadQ(T_INT32 port);

Description

Returns the number of bytes in the read queue.

InParam port

Indicates which PLC serial port to query (i.e. PORT1, PORT2).

ReturnVal

If successful, returns the number of bytes in the queue.

Returns -1 for a bad parameter or if message mode is not configured for the specified port.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

44 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.2.8 PLCC_gen_alarm

T_INT32 PLCC_gen_alarm(T_WORD error_code, char *fault_string);

Description

This function puts the fault described by error_code and fault_string into the controller fault table.

InParam error_code

Indicates the user specified error that is to be logged. The error code must be less than 2048.

InParam fault_string

Pointer to a character string describing the fault. String must be NULL terminated and less than 24
characters.

ReturnVal

This function will return 0 if successful and -1 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 45

3.5.2.9 PLCC_get_plc_version

T_INT32 PLCC_get_plc_version(struct PLC_ver_info_rec *PLC_ver_info);

*** ALL DATA RETURNED FROM THE PLC (in the structure

` PLC_ver_info) NEEDS TO BE LOOKED AT IN HEXADECIMAL

` for proper interpretation

struct PLC_ver_info_rec {
 T_WORD family; /* Host PLC product line */
 T_WORD model; /* Specific Model of PLC */
 T_BYTE sw_ver; /* Major Version of PLC firmware */
 T_BYTE sw_rev; /* Minor Revision of PLC firmware */
};

/* Family value */
#define FAMILY_PACSYSTEMS 0x2002
/* Model numbers */
#define CPE_010 0x02 /* PACSystems RX7i 300MHz PLC CPU */
#define CPE_020 0x04 /* PACSystems RX7i 700MHz PLC CPU */

#define CRE_020 0x05 /* PACSystems RX7i 700MHz Redundant PLC CPU */

#define CPE_030 0x06 /* PACSystems RX7i VME 700MHz (Pentium M) PLC CPU */

#define CPE_040 0x08 /* PACSystems RX7i VME 1.8GHz (Pentium M) PLC CPU */

#define CPU_310 0x0A /* PACSystems Rx3i PCI 300MHz PLC CPU */

#define NIU_001 0x0C /* PACSystems Rx3i PCI 300MHz NIU*/

#define CMU_310 0x0E /* PACSystems Rx3i PCI 300MHz MaxOn CPU */

#define CPE_330 0x10 /* PACSystems Rx3i CPE330 */

#define CPE_400 0x26 /* PACSystems Rx3i CPE400 */

Description

This function returns the PLC family, model, firmware version, and firmware revision.

InParam PLC_ver_info

Pointer to the structure of type PLC_ver_info. The PLC will return information concerning its firmware
version in each of the fields in this structure.

ReturnVal

The function will return 0 if successful and -1 if unsuccessful.

Chapter 3. Writing a C Application

46 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.3 Bus Read/Write Functions
The following functions based on the BUS functions available in ladder logic are defined in
ctkPlcBus.h. These functions are currently unsupported in the Rx3i and will return a not-supported
return value (-1). When reading the memory pointed to by pStatus the following values are possible
variables returned by these functions:

Variable Numeric Value

NOT_SUPPORTED -1

OPERATION_SUCCESSFUL 0

BUS_ERROR 1

MOD_DOES_NOT_EXIST 2

INVALID_MOD 3

START_ADDR_RANGE_ERR 4

END_ADDR_RANGE_ERR 5

EVEN_ADDR_ODD_CONFIG_ERR 6

ODD_ADDR_EVEN_CONFIG_ERR 7

WINDOW_NOT_ENABLED 8

INVALID_ACCESS_WIDTH 9

INVALID_PARAM 10

Note: The hardware configuration must be set up for the largest access for these functions to complete

with a successful status. For example, the module memory region Interface Type must use Dword

Access if any of the Dword functions are used. However, if only Word or Byte functions are used, the

Interface type can be Word Access. Similarly, if only byte functions are used, the Interface type can be

Byte Access. In addition, Word Access functions must use only even addresses and Dword Access

functions must be Dword aligned (0, 4, 8, etc.)

Note: The subSlot value for most modules will be 0.

Chapter 3. Writing a C Application

GFK-2259F October 2017 47

3.5.3.1 Proc PLCC_BUS_read_byte

T_INT32 PLCC_BUS_read_byte(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_BYTE *pBuffer, T_DWORD address);

Description

Read a byte from a device on the bus.

InParam rack

The rack number containing the module to access.

InParam slot

The slot number containing the module to access.

InParam subSlot

The sub-slot number of the module to access.

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pBuffer

Pointer to the byte read in from a device on the bus.

InParam address

Address of the byte to be read.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

Chapter 3. Writing a C Application

48 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.3.2 Proc PLCC_BUS_read_word

T_INT32 PLCC_BUS_read_word(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_WORD *pBuffer, T_DWORD address);

Description

Read a word from a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pBuffer

Pointer to the word read in from a device on the bus.

InParam address

Address of the word to be read.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 49

3.5.3.3 Proc PLCC_BUS_read_dword

T_INT32 PLCC_BUS_read_dword(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_DWORD *pBuffer, T_DWORD address);

Description

Read a dword from a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pBuffer

Pointer to the dword read in from a device on the bus.

InParam address

Address of the dword to be read.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

50 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.3.4 Proc PLCC_BUS_read_block

T_INT32 PLCC_BUS_read_block(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 void *pBuffer, T_WORD length,

 T_DWORD address);

Description

Read a block from a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pBuffer

Pointer to the data area to put the data.

InParam length

Size of the data area in bytes.

InParam address

Start Address of the data area to be read.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 51

3.5.3.5 Proc PLCC_BUS_write_byte

T_INT32 PLCC_BUS_write_byte(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_BYTE value, T_DWORD address);

Description

Write a byte to a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

InParam value

Byte value to be written to a device on the bus.

InParam address

Address of the byte to be written.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

52 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.3.6 Proc PLCC_BUS_write_word

T_INT32 PLCC_BUS_write_word(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_WORD value, T_DWORD address);

Description

Write a word to a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

InParam value

Word value to be written to a device on the bus.

InParam address

Address of the word to be written.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 53

3.5.3.7 Proc PLCC_BUS_write_dword

T_INT32 PLCC_BUS_write_dword(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_DWORD value, T_DWORD address);

Description

Write a dword to a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

InParam value

Dword value to be written to a device on the bus.

InParam address

Address of the dword to be written.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

54 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.3.8 Proc PLCC_BUS_write_block

T_INT32 PLCC_BUS_write_block(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 void *pBuffer, T_WORD length,

 T_DWORD address);

Description

Write a block of data to a device on the bus

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

InParam pBuffer

Pointer to the data to be written to a device on the bus.

InParam length

Length of the data to written to a device on the bus in bytes.

InParam address

Address of the data to be written.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 55

3.5.4 BUS Semaphore Functions
The following functions are designed to enable semaphore handling on the bus. These functions
cannot be interrupted.

BUS_RMW (read, modify, write)

Note: The following definitions are used to define whether the mask parameter uses an OR or AND

operation on the data: BUS_OR, BUS_AND.

3.5.4.1 PLCC_BUS_RMW_byte

T_INT32 PLCC_BUS_RMW_byte(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_BYTE *pOriginalValue, T_WORD op_type,

 T_DWORD mask, T_DWORD address);

Description

Read Modify Write a byte to a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pOriginalValue

Pointer to the value before the read-modify-write operation

InParam op_type

Specifies whether the mask is ANDed or ORed with the data. BUS_OR or BUS_AND

InParam mask

Data mask.

InParam address

Address of the data to be written.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

56 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.4.2 Proc PLCC_BUS_RMW_word

T_INT32 PLCC_BUS_RMW_word(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_WORD *pOriginalValue, T_WORD op_type,

 T_DWORD mask, T_DWORD address);

Description

Read Modify Write a word to a device on the bus

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above).

OutParam pOriginalValue

Pointer to the value before the read-modify-write operation.

InParam op_type

Specifies whether the mask is ANDed or ORed with the data. BUS_OR or BUS_AND

InParam mask

Data mask.

InParam address

Address of the data to be written.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 57

3.5.4.3 Proc PLCC_BUS_RMW_dword

T_INT32 PLCC_BUS_RMW_dword(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_DWORD *pOriginalValue, T_WORD op_type,

 T_DWORD mask, T_DWORD address);

Description

Read Modify Write a dword to a device on the bus

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pOriginalValue

Pointer to the value before the read-modify-write operation

InParam op_type

Specifies whether the mask is ANDed or ORed with the data. BUS_OR or BUS_AND

InParam mask

Data mask.

InParam address

Address of the data to be written.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

58 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.4.4 Proc PLCC_BUS_TST_byte

T_INT32 PLCC_BUS_TST_byte(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region,T_WORD *pStatus,

 T_BYTE *pSemaphoreOutput, T_DWORD address);

Description

This function reads a byte sized semaphore from the bus address and tests the least significant bit.
The semaphore output will be 0 is the semaphore is not obtained, 1 if it is obtained. You must
release this semaphore when it is no longer needed. To release a semaphore, write 0 to the
semaphore.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam semaphore_output

Results of locking semaphore

0 = not obtained
1 = obtained

InParam address

Address of the data to be written.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 59

3.5.4.5 Proc PLCC_BUS_TST_word

T_INT32 PLCC_BUS_TST_word(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_WORD *pSemaphoreOutput, T_DWORD address);

Description

This function reads a word-sized semaphore from the bus address and tests the least significant bit.
The semaphore output will be 0 is the semaphore is not obtained, 1 if it is obtained. You must free
this semaphore when it is no longer needed. To release a semaphore, write 0 to the semaphore. The
address must be word-aligned.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in hardware
configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam semaphore_output

Results of locking semaphore

0 = not obtained
1 = obtained

InParam address

Address of the data to be written.

ReturnVal

1 if successful
0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

60 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5 Service Request Functions
The following functions are patterned after the service request (SVC_REQ) function in ladder logic
and defined in ctkPlcFunc.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 61

3.5.5.1 PLCC_const_sweep_timer

T_INT32 PLCC_const_sweep_timer(struct const_sweep_timer_rec
 *pConstSweepTimerRec);
/* input structure */
struct const_sweep_input_rec {
 T_WORD action;
 T_WORD timer_value;
};
/* structure with return value */
struct const_sweep_output_rec {
 T_WORD sweep mode;
 T_WORD current_time_value;
};
struct const_sweep_timer_rec {
 union {
 struct const_sweep_input_rec input;
 struct const_sweep_output_rec output;
 };const_sweep; /*Note: union name required with PACSystems */
};
/* sweep mode values - these determine which action is to be taken */
#define DISABLE_CONSTANT_SWEEP_MODE 0
#define ENABLE_CONSTANT_SWEEP_MODE 1
#define CHANGE_TIMER_VALUE 2
#define READ_TIMER_VALUE_AND_STATE 3
/* sweep mode return values */
#define CONSTANT_SWEEP_ENABLED 1
#define CONSTANT_SWEEP_DISABLED 0

Description

This function is the C interface to service request #1 (Change/Read Constant Sweep Timer).

This function can be used to

• Disable constant sweep time mode

• Enable constant sweep time mode and use the old timer value

• Enable constant sweep time mode and use a new timer value

• Set a new timer value only

• Read constant sweep mode state timer and value

Setting sweep_mode to DISABLE_CONSTANT_SWEEP_MODE disables the constant sweep timer.
Setting sweep_mode to ENABLE_CONSTANT_SWEEP_MODE enables the constant with the value in
sweep_timer, or keep the current value if the sweep_timer is 0. Setting the sweep_mode to
CHANGE_TIMER_VALUE changes the constant sweep timer to the value in timer_value. Setting
sweep_mode to READ_TIMER_VALUE_AND_STATE sets sweep_enabled to 1 if the constant sweep
timer is enabled, and sets the current constant sweep timer value to the current_value.

In/OutParam pConstSweepTimerRec

Pointer to structure containing constant sweep timer record.

ReturnVal

This function returns 1 if successful and 0 if unsuccessful, and -1 if not supported.

Chapter 3. Writing a C Application

62 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.2 PLCC_read_window_values

T_INT32 PLCC_read_window_values(struct read_window_values_rec

 *pReadWindowValuesRec);

/* window modes */

#define LIMITED_MODE 0
#define CONSTANT_MODE 1
#define RUN_TO_COMPLETION_MODE 2

/* structure with return values */
struct read_window_values_rec{
 T_BYTE controller_win_time;
 T_BYTE controller_win_mode; /* LIMITED_MODE, CONSTANT_MODE,
 RUN_TO_COMPLETION_MODE */
 T_BYTE backplane_comm_win_time;
 T_BYTE backplane_comm_win_mode; /* LIMITED_MODE, CONSTANT_MODE,
 RUN_TO_COMPLETION_MODE */
 T_BYTE background_win_time;
 T_BYTE background_win_mode; /* LIMITED_MODE, CONSTANT_MODE, */
 /* RUN_TO_COMPLETION_MODE */
};

Description

This function is the C interface to service request #2 (Read Window Values). This function will return
the mode and time for the controller communications window, the backplane communications
window, and the background task window in the structure.

Note: The Series 90-70 referred to the Controller Communications window as the Programmer

Communications window. Also, the 90-70 referred to the Backplane Communications window as the

System Communications Window.

The possible values for the mode fields are LIMITED_MODE, CONSTANT_MODE, and
RUN_TO_COMPLETION_MODE. The time fields contain the time values in milliseconds.

OutParam pStatus

Pointer to structure containing record of the read window values.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 63

3.5.5.3 PLCC_change_controller_comm_window

T_INT32 PLCC_change_controller_comm_window

 (struct change_controller_comm_window_rec

 *pChangeControllerCommWindowRec);

struct change_controller_comm_window_rec{
 T_BYTE time;
 T_BYTE mode; /* LIMITED_MODE, CONSTANT_MODE, */
 /* RUN_TO_COMPLETION_MODE */
};

Description

This function is the C interface to service request #3 (Change Controller Communications Window
State and Values).

Note: The Series 90-70 documentation refers to the Controller Communications window as the Programmer

Communications window.

This function will change the Controller communications window state and timer to the values
specified in the structure. The mode will be changed to one of the three states LIMITED_MODE,
CONSTANT_MODE, or RUN_TO_COMPLETION_MODE depending on the value in the mode field.

InParam pChangeControllerCommWindowRec

Pointer to structure containing change controller window record. The time value should be from 1 to
255 milliseconds.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

64 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.4 PLCC_change_backplane_comm_window

T_INT32 PLCC_change_backplane_comm_window(struct change_system_comm_window_rec

 *pChangeBackplaneCommWindowRec);

struct change_system_comm_window_rec {
 T_BYTE time;
 T_BYTE mode;
};

/* window modes */
#define LIMITED_MODE 0
#define CONSTANT_MODE 1
#define RUN_TO_COMPLETION_MODE 2

Description

This function is the C interface to service request #4 (Change Backplane Communications Window
State and Values).

Note: The Series 90 documentation refers to the Backplane Communications window as the System

Communications Window.

This function will change the Backplane Communications Window state and timer to the values
specified in the structure. The mode will be changed to one of the three states LIMITED_MODE,
CONSTANT_MODE, or RUN_TO_COMPLETION_MODE depending on the value in the mode field.

InParam pChangeBackplaneCommWindowRec

Pointer to structure containing backplane communications record. The time value should be from 1
to 255 milliseconds.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 65

3.5.5.5 PLCC_change_background_window

T_INT32 PLCC_change_background_window(struct change_background_window_rec

 *pChangeBackgroundWindowRec);

struct change_background_window_rec {
 T_BYTE time;
 T_BYTE mode;
};

/* window modes */
#define LIMITED_MODE 0
#define CONSTANT_MODE 1
#define RUN_TO_COMPLETION_MODE 2

Description

This function is the C interface to service request #5 (Change_Background Window State and
Values). This function will change the background window state and timer to the values specified in
the structure. The mode will be changed to one of the three states LIMITED_MODE,
CONSTANT_MODE, or RUN_TO_COMPLETION_MODE depending on the value in the mode field.

InParam pChangeBackgroundWindowRec

Pointer to structure containing background window record. The time value should be from 1 to 255
milliseconds.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

66 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.6 PLCC_number_of_words_in_chksm

T_INT32 PLCC_number_of_words_in_chksm(struct number_of_words_in_chksm_rec

 *pNumberofWordsInChksmRec);

struct number_word_of_words_in_chksm_rec {
 T_WORD read_set;
 T_WORD word_count;
};

#define READ_CHECKSUM_WORDS 0
#define SET_CHECKSUM_WORDS 1

Description

This function is the C interface to service request #6 (Change/Read Checksum Task State and
Number of Words to Checksum). This function will either read the current checksum word count or
set a new checksum word count depending on the value in read_set. If read_set is
READ_CHECKSUM then the function will read the current word count and return it in word_count. If
the read_set is SET_CHECKSUM then the function will set the current word count to word_count
rounded to the nearest multiple of 8. To disable the checksums set the word_count to 0. The
function will fail if the read_write field is set to a value other than 0 or 1.

InParam pNumberOfWordsInChksmRec

Pointer to structure containing number of words in checksum record.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 67

3.5.5.7 PLCC_tod_clock

T_INT32 PLCC_tod_clock(struct tod_clock_rec *pTodClockRec);

Data Formats

This function supports the following data formats:

#define NUMERIC_DATA_FORMAT 0
#define BCD_FORMAT 1
#define UNPACKED_BCD_FORMAT 2
#define PACKED_ASCII_FORMAT 3
#define POSIX_FORMAT 4

#define NUMERIC_DATA_FORMAT_4_DIG_YR 0x80
#define BCD_FORMAT_4_DIG_YR 0x81
#define UNPACKED_BCD_FORMAT_4_DIG_YR 0x82
#define PACKED_ASCII_FORMAT_4_DIG_YR 0x83

Day of the Week Definitions:

#define SUNDAY 1
#define MONDAY 2
#define TUESDAY 3
#define WEDNESDAY 4
#define THURSDAY 5
#define FRIDAY 6
#define SATURDAY 7

NUMERIC_DATA_FORMAT

Decimal values for fields. For example, '94 for the year would be 94 decimal in the year field.

struct num_tod_rec{
 T_WORD year;
 T_WORD month;
 T_WORD day_of_month;
 T_WORD hours;
 T_WORD minutes;
 T_WORD seconds;
 T_WORD day_of_week;
};

BCD_FORMAT

Hexadecimal values for the fields. For example, '94 for the year would be 0x94.

struct BCD_tod_rec{
 T_BYTE year;
 T_BYTE month;
 T_BYTE day_of_month;
 T_BYTE hours;
 T_BYTE minutes;
 T_BYTE seconds;
 T_BYTE day_of_week;
 T_BYTE null;
};

Chapter 3. Writing a C Application

68 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

struct BCD_tod_4_rec{

 T_BYTE year_lo;
 T_BYTE year_hi;
 T_BYTE month;
 T_BYTE day_of_month;
 T_BYTE hours;
 T_BYTE minutes;
 T_BYTE seconds;
 T_BYTE day_of_week;
};

UNPACKED_BCD_FORMAT

Two byte fields make up the word category. For example, '94 for the year is 9 in yearhi and 4 in
yearlo.

struct unpacked_BCD_rec{

 T_BYTE yearlo;
 T_BYTE yearhi;
 T_BYTE monthlo;
 T_BYTE monthhi;
 T_BYTE day_of_month_lo;
 T_BYTE day_of_month_hi;
 T_BYTE hourslo;
 T_BYTE hourshi;
 T_BYTE minslo;
 T_BYTE minshi;
 T_BYTE secslo;
 T_BYTE secshi;
 T_WORD day_of_week;
};

struct unpacked_bcd_tod_4_rec{

 T_WORD huns_year;
 T_WORD tens_year;
 T_WORD month;
 T_WORD day_of_month;
 T_WORD hours;
 T_WORD minutes;
 T_WORD seconds;
 T_WORD day_of_week;
};

Chapter 3. Writing a C Application

GFK-2259F October 2017 69

PACKED_ASCII_FORMAT

Two ASCII character fields make up the word category. For example, 94 for the year is '9' in yearhi
and '4' in yearlo.

struct ASCII_tod_rec{

 T_BYTE yearhi;
 T_BYTE yearlo;
 T_BYTE space1;
 T_BYTE monthhi;
 T_BYTE monthlo;
 T_BYTE space2;
 T_BYTE day_of_month_hi;
 T_BYTE day_of_month_lo;
 T_BYTE space3;
 T_BYTE hourshi;
 T_BYTE hourslo;
 T_BYTE colon1;
 T_BYTE minshi;
 T_BYTE minslo;
 T_BYTE colon2;
 T_BYTE secshi;
 T_BYTE secslo;
 T_BYTE space4;
 T_BYTE day_of_week_hi;
 T_BYTE day_of_week_lo;
};

struct ascii_tod_4_rec{

 T_BYTE hun_year_hi;
 T_BYTE hun_year_lo;
 T_BYTE year_hi;
 T_BYTE year_lo;
 T_BYTE space1;
 T_BYTE month_hi;
 T_BYTE month_lo;
 T_BYTE space2;
 T_BYTE day_of_month_hi;
 T_BYTE day_of_month_lo;
 T_BYTE space3;
 T_BYTE hours_hi;
 T_BYTE hours_lo;
 T_BYTE colon1;
 T_BYTE minutes_hi;
 T_BYTE minutes_lo;
 T_BYTE colon2;
 T_BYTE seconds_hi;
 T_BYTE seconds_lo;
 T_BYTE space4;
 T_BYTE day_of_week_hi;
 T_BYTE day_of_week_lo;
};

Chapter 3. Writing a C Application

70 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

/* Definitions to be used with “read_write” field */

READ_CLOCK 0
WRITE_CLOCK 1

struct tod_clock_rec{

 T_WORD read_write; /* READ_CLOCK or WRITE_CLOCK */
 T_WORD format; /* NUMERIC_DATA_FORMAT, BCD_FORMAT,
 UNPACKED_BCD_FORMAT, PACKED_ASCII_FORMAT etc.
 (see above for additional formats)
 Note: All formats may not be supported by a
 particular PLC target */
 union {
 struct num_tod_rec num_tod;
 struct BCD_tod_rec BCD_tod;
 struct BCD_tod_4_rec BCD_tod_4;
 struct unpacked_BCD_rec unpacked_BCD_tod;
 struct unpacked_bcd_tod_4_rec unpacked_BCD_tod_4;
 struct ASCII_tod_rec ASCII_tod;
 struct ascii_tod_4_rec ASCII_tod_4;
 struct timespec POSIX_tod; /* timespec is defined in sys/types.h */
 } record; /* Note: 90-70 C Toolkit did not name this union */
};

Description

This function is the C interface to service request #7 (Change/Read Time-of-Day Clock State and
Values). If read_write is equal to READ_CLOCK then the function will read the Time-of-Day Clock
into the structure passed. If read_write is equal to WRITE_CLOCK then the function will write the
values in the structure to the time_of_day_clock. The format will be based on the format field in the
structure (NUMERIC_DATA_FORMAT, BCD_FORMAT, UNPACKED_BCD_FORMAT, and
PACKED_ASCII_FORMAT). The function will fail in the following instances:

• If read_write is some number other than 0 or 1

• If format is some number other than 0 – 3

• If data for a write does not match format

Chapter 3. Writing a C Application

GFK-2259F October 2017 71

For all the formats, the hours are 24-hour and the days of the week are defined as macros in
ctkFuncPlc.h. The packed BCD format needs the null field to be 0, as shown in the following
example:

Example:

#include “PACRxPLC.h”

int GeFMain()
{
 struct tod_clock_rec data;

 data.read_write = 1;
 data.format = BCD_FORMAT;

 /* set the time and date to 1:13:08pm Tuesday August 9, 1994
*/
 data.record.BCD_tod.year = 0x94;
 data.record.BCD_tod.month = 8;
 data.record.BCD_tod.day_of_month = 9;
 data.record.BCD_tod.hours = 0x13;
 data.record.BCD_tod.minutes = 0x13;
 data.record.BCD_tod.seconds = 8;
 data.record.BCD_tod.day_of_week = TUESDAY;
 data.record.BCD_tod.null = 0;
 PLCC_tod_clock (& data)
}

Chapter 3. Writing a C Application

72 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

The unpacked format should have a digit in every byte (including the day of the week) as shown in
the following example:

Example:

#include “PACRxPLC.h”

int GeFMain()
{
 struct tod_clock_rec data;

 data.read_write = 1;
 data.format = UNPACKED_BCD_FORMAT;

 /* set the time and date to 1:13:08pm Tuesday August 9, 1994
*/
 data.record.unpacked_BCD_tod.yearhi = 9;
 data.record.unpacked_BCD_tod.yearlo = 4;
 data.record.unpacked_BCD_tod.monthhi = 0;
 data.record.unpacked_BCD_tod.monthlo = 8;
 data.record.unpacked_BCD_tod.day_of_month_hi = 0;
 data.record.unpacked_BCD_tod.day_of_month_lo = 9;
 data.record.unpacked_BCD_tod.hourshi = 1;
 data.record.unpacked_BCD_tod.hourslo = 3;
 data.record.unpacked_BCD_tod.minshi = 1;
 data.record.unpacked_BCD_tod.minslo = 3;
 data.record.unpacked_BCD_tod.secshi = 0;
 data.record.unpacked_BCD_tod.secslo = 8;
 data.record.unpacked_BCD_tod.day_of_week = TUESDAY;
 PLCC_tod_clock (& data)

}

Chapter 3. Writing a C Application

GFK-2259F October 2017 73

The packed ASCII format should have an ASCII character in every byte as shown in the following
example:

Example:

#include “PACRx PLC.h”

int GeFMain()
{
 struct tod_clock_rec data;

 data.read_write = 1;
 data.format = PACKED_ASCII_FORMAT;

 /* set the time and date to 1:13:08pm Tuesday August 9, 1994
*/
 data.record.ASCII_tod.yearhi = ‘9’;
 data.record.ASCII_tod.yearlo = ‘4’;
 data.record.ASCII_tod.space1 = ‘ ’;
 data.record.ASCII_tod.monthhi = ‘0’;
 data.record.ASCII_tod.monthlo = ‘8’;
 data.record.ASCII_tod.space2 = ‘ ’;
 data.record.ASCII_tod.day_of_month_hi = ‘0’;
 data.record.ASCII_tod.day_of_month_lo = ‘9’;
 data.record.ASCII_tod.space3 = ‘ ’;
 data.record.ASCII_tod.hourshi = ‘1’;
 data.record.ASCII_tod.hourslo = ‘3’;
 data.record.ASCII.tod.colon1 = ‘:’;
 data.record.ASCII_tod.minshi = ‘1’;
 data.record.ASCII_tod.minslo = ‘3’;
 data.record.ASCII_tod.colon2 = ‘:’;
 data.record.ASCII_tod.secshi = ‘0’;
 data.record.ASCII_tod.secslo = ‘8’;

 /* place 0 ASCII (30 hex) in the high byte for the number */
 data.record.ASCII_tod.day_of_weekhi = ‘0’;

 /* place TUESDAY(3) plus 30 hex into the lo */
 /* byte to make the number an ASCII character */
 data.record.ASCII_tod.day_of_weeklo = TUESDAY+0x30;
 PLCC_tod_clock_rec (& data)

}

In/OutParam pTodClockRec

Pointer to structure containing time of day clock record.

ReturnVal

This function returns 1 if successful, 0 if unsuccessful or -1 if not supported.

Chapter 3. Writing a C Application

74 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.8 PLCC_reset_watchdog_timer

T_INT32 PLCC_reset_watchdog_timer(void);

Description

This function is the C interface to service request #8 (Reset Watchdog Timer). This function will reset
the watchdog timer during the sweep. When the watchdog timer expires, the PLC shuts down
without warning. This function allows the timer to be refreshed during a time-consuming task.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

Caution

Be careful resetting the watchdog timer. It may affect the process.

Chapter 3. Writing a C Application

GFK-2259F October 2017 75

3.5.5.9 PLCC_time_since_start_of_sweep

T_INT32 PLCC_time_since_start_of_sweep(struct time_since_start_of_sweep_rec

 *pTimeSinceStartofSweepRec);

struct time_since_start_of_sweep_rec {
 T_WORD time_since_start_of_sweep;
};

Description

This function is the C interface to service request #9 (Read Sweep Time from Beginning of Sweep).
The function will read the time in milliseconds from the beginning of the sweep.

InParam pTimeSinceStartOfSweepRec

Pointer to structure containing the time since the start of sweep.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

76 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.10 PLCC_nano_time_since_start_of_sweep

T_INT32 PLCC_nano_time_since_start_of_sweep

 (struct nano_time_since_start_of_sweep_rec

 *pNanoTimeSinceStartOfSweepRec);

struct nano_time_since_start_of_sweep_rec{

 T_DWORD time_since_start_of_sweep;

};

Description

Read Sweep Time from the Beginning of Sweep in nanosecond units. This service request will get the
time in nanoseconds since the start of the sweep.

InParam pNanoTimeSinceStartOfSweepRec

Pointer to structure containing the time in nanoseconds since the start of sweep.

ReturnVal

 1 if successful
 0 if unsuccessful
-1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 77

3.5.5.11 PLCC_read_folder_name

T_INT32 PLCC_read_folder_name(struct read_folder_name_rec *pReadFolderNameRec);

struct read_folder_name {
 char folder_name[MAX_FOLDER_NAME_LENGTH]; /* NULL terminated */
};

#define MAX_FOLDER_NAME_LENGTH 32

Description

This function is the C interface to the PLC similar to service request #10 (Read Folder Name), which
only supports a folder name length of 8 characters, including NULL terminator. This function
supports 32 characters, which includes one NULL terminator character. This function will return the
application folder name as a NULL terminated string.

OutParam pReadFolderNameRec

Pointer to structure containing the folder name.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

78 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.12 PLCC_read_PLC_ID

T_INT32 PLCC_read_PLC_ID(struct read_PLC_ID_rec *pReadPlcIdRec);

struct read_PLC_ID_rec {
 char PLC_ID[8];
};

Description

This function is based on service request #11 (Read PLC ID). The function returns the name of the
PACSystems controller (in ASCII).

OutParam pReadPlcIdRec

Pointer to structure containing the PLC Id.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 79

3.5.5.13 PLCC_read_PLC_state

T_INT32 PLCC_read_PLC_state(struct read_PLC_state_rec *pReadPLCStateRec);

struct read_PLC_state_rec {
 T_WORD state;
};

#define RUN_DISABLED 1
#define RUN_ENABLED 2

Description

This function is based on service request #12 (Read PLC Run State). This function returns the PLC run
state (RUN_DISABLED or RUN_ENABLED).

OutParam pReadPlcStateRec

Pointer to structure containing the PLC state.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

80 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.14 PLCC_shut_down_plc

T_INT32 PLCC_shut_down_plc(T_WORD numberOfSweeps);

Description

This function is the C interface to service request #13 (Shut Down/Stop PLC). The function stops the
PLC at the end of the current sweep if numberOfSweeps is equal to 0. All outputs go to their
designated default states at the beginning of the next sweep and the “STOPPED by SVC 13”
information fault will be logged in the controller fault table. The numberOfSweeps parameter
determines the number of full sweeps that should occur before shutting down the PLC. This is
normally set to 0.

InParam numberOfSweeps

Number of full sweeps that should occur before shutting down the PLC. This is normally set to 0.

ReturnVal

The function will return 1 if successful, and 0 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 81

3.5.5.15 PLCC_mask_IO_interrupts

T_INT32 PLCC_mask_IO_interrupts(struct mask_IO_interrupts_rec

 *pMaskIoInterruptsRec);

struct mask_IO_interrupts_rec {
 T_WORD mask;
 T_WORD memory_type;
 T_WORD memory_address;
};

/* Possible values for the “mask” element */

#define MASK 1
#define UNMASK 0

/* Valid memory types */
#define IBIT 70
#define AIMEM 10

All offsets are 1-based: %I1=1, %I2=2, ... %AI1=1, %AI2=2, ...

Discrete offsets and lengths are in bits and must be byte aligned.
 1, 9, 17, 25, ... are valid for offsets
 2-8, 10-16, 18-24, ... are invalid for offsets

Analog offsets and lengths must be in words.

Description

This function is the C interface to service request #17 (Mask/Unmask I/O Interrupt). The function will
mask or unmask interrupts from an input module according to the value in mask (MASK or
UNMASK). The memory_type parameter specifies the memory type of the input to mask or unmask
and can have a value of %I (IBIT) or %AI (AIMEM). The address specified must match a PACSystems
input module with maskable channel and interrupts enabled.

InParam pMaskIoInterruptsRec

Pointer to structure containing mask I/O interrupt information.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

82 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.16 PLCC_mask_IO_interrupts_ext

Note: Firmware version 3.50 or higher is required for this function.

struct mask_IO_interrupts_ext_rec{

 T_WORD action; /* MASK or UNMASK */

T_WORD memory_type; /* Address of input interrupt trigger */

 T_DWORD memory_offset;

};

extern T_INT32 PLCC_mask_IO_interrupts_ext(struct
 mask_IO_interrupts_ext_rec

/* Possible values for the “action” element */

#define MASK 1
#define UNMASK 0

/* Valid memory type */
#define PLCVAR_MEM 262 (for use with Variables)
#define IBIT 70
#define AIMEM 10

All offsets are 1-based: %I1=1, %I2=2, ... %AI1=1, %AI2=2, ...

Discrete offsets and lengths are in bits and must be byte aligned.

1, 9, 17, 25, ... are valid for offsets

2-8, 10-16, 18-24, ... are invalid for offsets

Analog offsets and lengths must be in words.

Description

This function is based on the MASK_IO_INTR function block. It is used to mask or unmask an
interrupt from an I/O board.

When the interrupt is masked, the CPU processes the interrupt but does not schedule the associated
logic for execution. When the interrupt is unmasked, the CPU processes the interrupt and schedules
the associated logic for execution. When the CPU transitions from Stop to Run, the interrupt is
unmasked.

This function provides PLC variable access along with reference addresses having 32-bit offset as
input. Memory type and offset specify the address of an input interrupt trigger on an input module
that supports interrupts. To specify an IO variable as an input to a routine, use the PLC_VAR_MEM
memory type and the address of the variable record as the offset. For details, see Section 3.5.10.1,
PLC_VAR_MEM.

InParam pMaskIoInterruptsExtRec

Pointer to structure containing mask I/O interrupt information.

ReturnVal

 1 if successful, 0 if unsuccessful, -1 if not supported

Errno

This function sets Errno if reference memory is out of range. See cpuErrno.h for possible values.

Chapter 3. Writing a C Application

GFK-2259F October 2017 83

3.5.5.17 PLCC_read_IO_override_status

T_INT32 PLCC_read_IO_override_status(struct read_IO_override_status_rec

 *pReadOverrideStatusRec);

struct read_IO_override_status_rec {
 T_WORD override_status;
};

#define OVERRIDES_SET 1
#define NO_OVERRIDES_SET 0

Description

This function is the C interface to service request #18 (Read I/O Override Status). The function will
return the override_status (OVERRIDES_SET, or NO_OVERRIDES_SET).

OutParam pReadIoOverrideStatusRec

Pointer to structure containing override status information.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

84 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.18 PLCC_set_run_enable

T_INT32 PLCC_set_run_enable(struct set_run_enable_rec *pSetRunEnableRec);

struct set_run_enable_rec {
 T_WORD enable;
};

#define RUN_ENABLED 1
#define RUN_DISABLED 2

Description

This function is the C interface to service request #19 (Set Run Enable/Disable). The function will set
the PLC in either RUN_ENABLED or RUN_DISABLED depending on what value was passed in the
structure. Use SVCREQ function #19 to permit the ladder program to control the RUN mode of the
CPU.

InParam pSetRunEnableRec

Pointer to structure containing enable run value.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 85

3.5.5.19 PLCC_mask_timed_interrupts

T_INT32 PLCC_mask_timed_interrupts(struct mask_timed_interrupts_rec

 *pMaskTimedInterruptRec);

struct mask_timed_interrupts_rec {
 T_WORD action;/* READ_INTERRUPT_MASK or WRITE_INTERRUPT_MASK */
 T_WORD status; /* if action is READ_INTERRUPT_MASK then this

 field has MASK or UNMASK as the return value

 if the action is WRITE_INTERRUPT_MASK then

 set this field to MASK or UNMASK */
};

/* Possible “action” field values */

#define READ_INTERRUPT_MASK 0
#define WRITE_INTERRUPT_MASK 1

/* Possible “status” field values */

#define MASK 1
#define UNMASK 0

Description

This function is the C interface to service request #22 (Mask/Unmask Timed Interrupts). Use this
function to mask or unmasked timed interrupts and to read the current mask. When the interrupts
are masked, the PLC CPU will not execute any interrupt block that is associated with a timed
interrupt. Timed interrupts are masked/unmasked as a group. They cannot be individually masked
or unmasked.

To read current mask, set action to READ_INTERRUPT_MASK.

To change current mask to unmask timed interrupts, set action to WRITE_INTERRUPT_MASK and
status to UNMASK.

To change current mask to mask timed interrupts, set action to WRITE_INTERRUPT_MASK and
status to MASK.

Successful execution will occur unless some number other than 0 or 1 is entered as the requested
operation or mask value.

In/OutParam pMaskTimedInterruptsRec

Pointer to structure containing masked timed interrupt values.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

Chapter 3. Writing a C Application

86 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.20 PLCC_sus_res_HSC_interrupts

T_INT32 PLCC_sus_res_HSC_interrupts(struct sus_HSC_interrupts_rec

 *pSusResHscInterruptsRec);

struct sus_res_HSC_interrupts_rec {
 T_WORD action; /* SUSPEND or RESUME */
 T_WORD memory_type;
 T_WORD reference_address
};

/*Valid memory types */
#define IBIT 70
#define AIMEM 10

/*Valid “action” values */
#define RESUME 0
#define SUSPEND 1

All offsets are 1-based: %I1=1, %I2=2, ... %AI1=1, %AI2=2, ...

Discrete offsets and lengths are in bits and must be byte aligned.

1, 9, 17, 25, ... are valid for offsets

2-8, 10-16, 18-24, ... are invalid for offsets

Analog offsets and lengths must be in words.

Description

This function is based on service request #32 (Suspend High Speed Counter Interrupts). The function
will enable or disable the high speed counter interrupts for a given address and memory type.

InParam pSusResHscInterruptsRec

Pointer to structure containing high speed counter interrupt suspension/resumption values.

ReturnVal

 1 if successful

 0 if unsuccessful

-1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 87

3.5.5.21 PLCC_sus_res_interrupts_ext

Note: Firmware version 3.50 or higher is required for this function.

struct sus_res_interrupts_ext_rec{

 T_WORD action; /* SUSPEND or RESUME */
 T_WORD memory_type; /* Address of the interrupt trigger */
 T_DWORD memory_offset;
};
extern T_INT32 PLCC_sus_res_interrupts_ext(struct sus_res_interrupts_ext_rec
*pSusResInterruptsExtRec);

/* Possible values for the “action” element */
#define SUSPEND 1
#define RESUME 0
/* Valid memory type */
#define PLCVAR_MEM 262 (for use with Variables)
#define IBIT 70
#define AIMEM 10
All offsets are 1-based: %I1=1, %I2=2, ... %AI1=1, %AI2=2, ...
Discrete offsets and lengths are in bits and must be byte aligned.
1, 9, 17, 25, ... are valid for offsets
2-8, 10-16, 18-24, ... are invalid for offsets
Analog offsets and lengths must be in words.

Description

This function is based on the SUSP_IO_INTR function block. It is used to suspend or resume an I/O
interrupt. Currently it is supported only for High Speed Counter.

This function provides PLC variable access along with reference addresses having 32-bit offset as
input. Memory type and offset specify the address of an input interrupt trigger on an input module
that supports interrupts. To specify a PLC variable as an input to a routine, use the PLC_VAR_MEM
memory type and the address of the variable record as the offset. For details, see Section 3.5.10.1,
PLC_VAR_MEM.

When used for reference addresses, all offsets are 1-based: %I1=1, %I2=2, ... %AI1=1, %AI2=2, ...

Discrete offsets and lengths are in bits and must be byte aligned.

1, 9, 17, 25, ... are valid for offsets

2-8, 10-16, 18-24, ... are invalid for offsets

Analog offsets and lengths must be in words.

InParam pSusResInterruptsExtRec

A pointer to Suspend Resume Interrupts Extn record.

ReturnVal

 1 if successful

 0 if unsuccessful

-1 if not supported

Errno

This function sets Errno if reference memory is out of range. See cpuErrno.h for possible values.

Chapter 3. Writing a C Application

88 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.5.22 PLCC_get_escm_status

INT32 PLCC_get_escm_status (struc escm_status_rec *pEscmStatusRec);
struc escm_status_rec {
 T_WORD port_number;
 T_WORD port_status;

};
#define port_1 1
#define port_2 2

Description

If the function return value is zero (0), the function was not successful, usually indicating that the PLC
does not support ESCM (embedded serial communications module) ports (see Note below). If the
function return value is one (1), the function was successful.

This function also returns a status word for Ports 1 or 2 (word port_status). The bit values for that
word are shown in the following table:

Port_Status for the PLCC_get_escm_status Function

Port Status Meaning

bit 0 PORTN_OK: Requested port is ready. If value is 1, the port is ready. If value is 0, the port is not usable.

bit 1 PORTN_ACTIVE: There is activity on this port. If value is 1, the port is active. If value is 0, the port is
inactive.

bit 2 PORTN_DISABLED: Requested port is disabled. If value is 1, the port is disabled. If value is 0, the port
is enabled.

bit 3 PORTN_FUSE_BLOWN: Requested port’s fuse is blown (for Port 2) or supply voltage is not within
range (for Port 1). If value is 1, the fuse is blown (or voltage not within range). If value is 0, the fuse (or
supply voltage) is okay.

Note: Because the ESCM is not supported on the PACSystems CPUs, this function always returns a value of

0.

OutParam pEscmStatusRec

A pointer to an escm_status_rec.

ReturnVal

1 if successful

0 if unsuccessful or ESCM is not supported.

Chapter 3. Writing a C Application

GFK-2259F October 2017 89

3.5.5.23 PLCC_set_application_redundancy_mode

Note: CPU firmware version 5.00 or higher is required for this function.

extern T_INT32 PLCC_set_application_redundancy_mode(T_WORD mode);

/* Possible values for the redundancy mode. */

#define BACKUP_MODE 0

#define ACTIVE_MODE 1

Description

Note: The PLCC_set_application_redundancy_mode function is recognized only in non-HSB (hot standby)

CPUs. (These CPUs have a “CPE” or “CPU” designation.)

This function is intended for use in user-developed redundancy applications. In these systems, the
application logic coordinates between CPUs that act as redundant partners, and determines which
CPU is the active unit and which are backup units. This function is not needed for HSB (CRE) CPUs,
because the redundancy firmware in those CPUs automatically adjusts the active/backup role of
each Ethernet interface that is configured for redundant IP operation.

This service request sends a role switch command to all Ethernet interfaces in the PLC that are
configured for redundant IP operation. When a redundancy role switch occurs, the backup CPU
becomes active and begins responding to the Redundant IP address in addition to its direct IP
address. The formerly active CPU switches to backup and stops communicating on the network
using the Redundant IP address.

PLCC_set_application_redundancy_mode has no effect on Ethernet interfaces that are not
configured for redundant IP operation.

For information on Ethernet redundancy operation, refer to the PACSystems RX7i, RX3i and RSTi-EP
TCP/IP Ethernet Communications User Manual, GFK-2224.

InParam mode

The requested redundancy mode: Use 0 for backup mode, or 1 for active mode.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

90 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.6 Fault Table Service Request Functions
The following functions access the fault table. These functions are defined in ctkPlcFault.h.

The following definitions and structures are common to the Fault Table Service Request Functions:

#define NUM_LEGACY_PLC_FAULT_ENTRIES 16
#define NUM_LEGACY_IO_FAULT_ENTRIES 32

#define PLC_FAULT_TABLE 0
#define IO_FAULT_TABLE 1

#define PLC_EXT_FAULT_TABLE 0x80
#define IO_EXT_FAULT_TABLE 0x81
/*
 * NOTE: time stamps are in BCD format
 */
struct time_stamp_rec{
 T_BYTE second; /* BCD format, seconds in low-order nibble, */
 /* tens of seconds in high-order nibble. */
 T_BYTE minute; /* BCD format, same as for seconds. */
 T_BYTE hour; /* BCD format, same as for seconds. */
 T_BYTE day; /* BCD format, same as for seconds. */
 T_BYTE month; /* BCD format, same as for seconds. */
 T_BYTE year; /* BCD format, same as for seconds. */
};
struct ext_time_stamp_rec{
 T_BYTE second; /* BCD format, seconds in low-order nibble, */
 /* tens of seconds in high-order nibble. */
 T_BYTE minute; /* BCD format, same as for seconds. */
 T_BYTE hour; /* BCD format, same as for seconds. */
 T_BYTE day; /* BCD format, same as for seconds. */
 T_BYTE month; /* BCD format, same as for seconds. */
 T_BYTE year; /* BCD format, same as for seconds. */
 T_WORD millisecond; /* BCD format, 0HTO ms format, milliseconds */
 /* in low-order nibble (xxxO), tens (xxTx), hundreds next (xHxx).*/
};
struct PLC_flt_address_rec{
 T_BYTE rack;
 T_BYTE slot;
 T_WORD task;
};
struct IO_flt_address_rec{
 T_BYTE rack;
 T_BYTE slot;
 T_BYTE IO_bus;
 T_BYTE block;
 T_WORD point;
};
struct reference_address_rec{
 T_BYTE memory_type;
 T_WORD offset;

Chapter 3. Writing a C Application

GFK-2259F October 2017 91

};
/* Note: this is the long PLC fault entry type */
struct PLC_fault_entry_rec{
 T_BYTE long_short;
 T_BYTE reserved[3];
 struct PLC_flt_address_rec PLC_fault_address;
 T_BYTE fault_group;
 T_BYTE fault_action;
 T_WORD error_code;
 T_WORD fault_specific_data[12];
 struct time_stamp_rec time_stamp;
};
struct IO_fault_entry_rec{
 T_BYTE long_short;
 struct reference_address_rec reference_address;
 struct IO_flt_address_rec IO_fault_address;
 T_BYTE fault_group;
 T_BYTE fault_action;
 T_BYTE fault_category;
 T_BYTE fault_type;
 T_BYTE fault_description;
 T_BYTE fault_specific_data[21];
 struct time_stamp_rec time_stamp;
};
struct PLC_ext_fault_entry_rec{
 T_BYTE long_short;
 T_BYTE reserved[3];
 struct PLC_flt_address_rec PLC_fault_address;
 T_BYTE fault_group;
 T_BYTE fault_action;
 T_WORD error_code;
 T_WORD fault_specific_data[12];
 struct ext_time_stamp_rec time_stamp;
 T_WORD fault_id;
};
struct IO_ext_fault_entry_rec{
 T_BYTE long_short;
 struct reference_address_rec reference_address;
 struct IO_flt_address_rec IO_fault_address;
 T_BYTE fault_group;
 T_BYTE fault_action;
 T_BYTE fault_category;
 T_BYTE fault_type;
 T_BYTE fault_description;
 T_BYTE fault_specific_data[21];
 struct ext_time_stamp_rec time_stamp;
 T_WORD fault_id;
};

Chapter 3. Writing a C Application

92 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.6.1 PLCC_clear_fault_tables

T_INT32 PLCC_clear_fault_tables(struct clear_fault_tables_rec *x);

struct clear_fault_tables_rec {
 T_WORD table;
};

/* Valid “table” values */

#define PLC_FAULT_TABLE 0
#define IO_FAULT_TABLE 1

Description

This function is the C interface to service request #14 (Clear Fault Tables). The function will clear the
fault table according to the value (PLC_FAULT_TABLE or IO_FAULT_TABLE).

InParam x

Pointer to structure which indicates whether to clear the PLC or the I/O fault table.

ReturnVal

The function returns 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 93

3.5.6.2 PLCC_read_last_fault

INT32 PLCC_read_last_fault(struct read_last_fault_rec *x);

struct read_last_fault_rec {
 T_WORD table;
 union {
 struct PLC_entry_rec PLC_entry;
 struct IO_entry_rec IO_entry_rec;
 } faultEntry; /*Note: 90-70 C Toolkit did not require union name */
};

/* Valid “table” values */

#define PLC_FAULT_TABLE 0
#define IO_FAULT_TABLE 1

Description

This function is the C interface to service request #15 (Read Last-Logged Fault Table Entry). The
function will return the last fault table entry of the table specified in the table field
(PLC_FAULT_TABLE, or IO_FAULT_TABLE).

In the return data, the long/short indicator defines the quantity of fault data present in the fault
entry. In the controller fault table, a long/short value of 00 represents 8 bytes of fault extra data
present in the fault entry, and 01 represents 24 bytes of fault extra data. In the I/O fault table, 02
represents 5 bytes of fault specific data, and 03 represents 21 bytes.

InParam x

Pointer to structure containing record of last PLC and I/O fault.

Return Data

The function returns a 1 if successful and a 0 if unsuccessful.

Chapter 3. Writing a C Application

94 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.6.3 PLCC_read_fault_tables

T_INT32 PLCC_read_fault_tables(struct read_fault_tables_rec *x);

struct read_fault_tables_rec {
 T_WORD table;
 T_WORD zero;
 T_WORD reserved[13];
 struct tine_stamp_rec time_since_clear;
 T_WORD num_faults_since_clear;
 T_WORD num_faults_in_queue;
 T_WORD num_faults_read;
 union {
 struct PLC_entry_rec PLC_faults[NUM_LEGACY_PLC_FAULT_ENTRIES];
 struct IO_entry_rec IO_faults[NUM_LEGACY_IO_FAULT_ENTRIES];
 }faultEntry; /* 90-70 C Toolkit did not require union name */
};

#define PLC_FAULT_TABLE 0
#define IO_FAULT_TABLE 1

Description

This function is the C interface to service request #20 (Read Fault Tables). The function will read the
fault table specified in the table field (PLC_FAULT_TABLE or IO_FAULT_TABLE). The function will
return the table in an array of PLC_faults or IO_faults. The zero field and the reserved fields do not
hold fault data. The time_since_clear fields are BCD numbers with seconds in the low order nibble
and tens of seconds in the high order nibble. The num_faults_since_clear field shows the number
of faults that have occurred since the table was last cleared. The num_faults_read field shows the
number of faults read into the arrays for I/O and PLC faults; there is room for the entire table, but
only the num_faults_read field
will have valid data.

In the return data, the long/short indicator defines the quantity of fault data present in the fault
entry. In the controller fault table, a long/short value of 00 represents 8 bytes of fault extra data
present in the fault entry, and 01 represents 24 bytes of fault extra data. In the I/O fault table, 02
represents 5 bytes of fault specific data, and 03 represents 21 bytes.

This function provides a maximum of 16 controller fault table entries and 32 I/O fault table entries. If
the fault table read is empty, no data is returned.

InParam x

Pointer to structure containing record of all current PLC or I/O fault table entries.

Return Data

The function will return 1 if successful, and 0 if unsuccessful.

Chapter 3. Writing a C Application

GFK-2259F October 2017 95

3.5.6.4 PLCC_read_last_ext_fault

T_INT32 PLCC_read_last_ext_fault(struct read_last_ext_fault_rec *x);

struct read_last_ext_fault_rec {
 T_WORD table; /* PLC_EXT_FAULT_TABLE or IO_EXT_FAULT_TABLE */
 union {
 struct PLC_ext_fault_entry_rec PLC_entry;
 struct IO_ext_fault_entry_rec IO_entry; } faultEntry; /* note: 90-70 C Toolkit did not require
name for union */
};

/* Use the following definitions for “table” */

#define PLC_EXT_FAULT_TABLE 0x80
#define IO_EXT_FAULT_TABLE 0x81

Description

This service request will read the last entry logged in either the PLC or I/O fault table with the
extended format. This function is the C interface to service request #15 when the fault table entry
value is either PLC_EXT_FAULT_TABLE or IO_EXT_FAULT_TABLE.

InParam x

Pointer to structure containing extended record of last PLC and I/O fault.

ReturnVal

 1 if successful
 0 if unsuccessful
 -1 if not supported

Chapter 3. Writing a C Application

96 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.6.5 PLCC_read_ext_fault_tables

T_INT32 PLCC_read_ext_fault_tables(struct read_ext_fault_tables_rec *x);

struct read_ext_fault_tables_rec {
 T_WORD table; /* PLC_EXT_FAULT_TABLE or IO_EXT_FAULT_TABLE */
 T_WORD start_index;
 T_WORD number_of_entries_to_read;
 T_WORD reserved[12];
 struct time_stamp_rec time_since_clear;
 T_WORD num_faults_since_clear;
 T_WORD num_faults_in_queue;
 T_WORD num_faults_read;
 T_WORD PlcName[16];
 union{
 struct PLC_ext_fault_entry_rec PLC_faults[1];
 struct IO_ext_fault_entry_rec IO_faults[1];
 } faultEntry; /* note: 90-70 C Toolkit did not require name for union */
};

/* Note the faultEntry member structures are intended to be variable size

 arrays. See Appendix A for instructions on how to change the size of the

 array.*/

Description

This service request will read the entire PLC or I/O fault table in extended
format. This function is the C interface to service request #20 (Read Fault Tables) when the table is
specified to be either PLC_EXT_FAULT_TABLE or IO_EXT_FAULT_TABLE.

InParam x

Pointer to structure containing record of all PLC or I/O fault tables in extended
format.

ReturnVal

 1 if successful
 0 if unsuccessful
 -1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 97

3.5.7 Module Communications

3.5.7.1 PLCC_comm_req

T_INT32 PLCC_comm_req(struct comm_req_rec *pCommReqRec);

struct status_addr {
 T_WORD seg_selector;
 T_WORD offset;
};

struct comm_req_command_blk_rec {
 T_WORD length;
 T_WORD wait;
 struct status_addr status;
 T_WORD idle_timeout;
 T_WORD max_comm_time;
 T_WORD data[128];
};

struct comm_req_rec {
 struct comm_req_command_blk_rec *command_blk;
 T_BYTE slot;
 T_BYTE rack;
 T_DWORD task_id;
 T_BYTE ft; /ft is set if the COMMREQ fails */
};

Description

This function is based on the COMMREQ ladder logic block.

InParam pCommReqRec

A pointer to communications request record.

ReturnVal

The function returns 1 if successful and 0 if unsuccessful.

Chapter 3. Writing a C Application

98 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.8 Ladder Function Blocks

3.5.8.1 PLCC_do_io

T_INT PLCC_do_io(struct do_io_rec * pDoIoRec);

struct do_io_rec {
 T_BYTE start_mem_type;
 T_WORD start_mem_offset;
 T_WORD length;
 T_BYTE alt_mem_type; /* must be set to NULL_SEGSEL if not used */
 T_WORD alt_mem_offset;
};

#define NULL_SEGSEL 0xFF (Only valid for alt_mem_type)

/* Valid memory types */
#define I_MEM 16
#define Q_MEM 18
#define R_MEM 8
#define AI_MEM 10
#define AQ_MEM 12
#define W_MEM 196

Description

This function is used to update inputs or outputs for one scan while the program is running. This
function can be used in conjunction with the Suspend I/O function (Section 3.5.8.3), which stops the
normal I/O scan. It can also be used to update selected I/O during the program, in addition to the
normal I/O scan.

If input references are specified, the function allows the most recent values of inputs to be obtained
for program logic. If output references are specified, PLCC_do_io updates outputs based on the
most current values stored in I/O memory. I/O points are serviced in increments of entire I/O
modules; the PLC adjusts the references, if necessary, while the function executes. The PLCC_do_io
function will not scan I/O modules that are not configured.

The PLCC_do_io function is supported for most PACSystems modules. It does not support Genius I/O
modules. The PLCC_do_io function skips modules that do not support DO_IO scanning. For details,
see “Control Functions” in the PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-2222.

When this function executes, the input point specified by start_mem_type and start_mem_offset
and the bits included (as specified by length) are scanned. If alternate_mem_type and
alternate_mem_offset is defined, a copy of the data is placed in alternate memory, and the real
input points are not updated. If this function references output data, data specified in
start_mem_type and start_mem_offset is written to the output modules. If alt locations are
defined, the alternate data is written to the output modules.

Execution of the function continues until either all inputs in the selected range have reported or all
outputs have been serviced on the I/O cards.

For PLCC_do_io, the Offset and Length for Word types is in units of Words. For Bit types, the Offset
and Length is in units of Bits. Offset and Length is 1-based.

Chapter 3. Writing a C Application

GFK-2259F October 2017 99

InParam pDoIoRec

A pointer to Do I/O record.

ReturnVal

The function returns a 1 unless one or more of the following is true (in which case it returns a 0):

■ Not all references of the type specified are present within the selected range.

■ The CPU is not able to properly handle the temporary list of I/O created by the function.

■ The range specified includes I/O modules that are associated with a Loss of I/O Module fault.

Note: If the function is used with timed or I/O interrupts, transitional contacts associated with scanned

inputs may not operate as expected. If an I/O or Alt reference address, including length, is outside the

configured memory limits, the function will set errno with values described in CPUErrno.h.

Chapter 3. Writing a C Application

100 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.8.2 PLCC_do_io_ext

Note: Firmware version 3.50 or higher is required for this function.

struct do_io_ext_rec{

 T_WORD start_mem_type;

 T_DWORD start_mem_offset;

 T_DWORD length; /* Ignored if start_mem_type is PLC_VAR_MEM */

 T_WORD alt_mem_type; /* must be set to NULL_SEGSEL if not used */

 T_DWORD alt_mem_offset;

};

/* Valid memory types */
#define I_MEM 16
#define Q_MEM 18
#define R_MEM 8
#define AI_MEM 10
#define AQ_MEM 12
#define W_MEM 196
#define PLCVAR_MEM 262

extern T_INT32 PLCC_do_io_ext(struct do_io_ext_rec *pDoIoExtRec);

Description

This function is an extension of PLCC_do_io. It is used to update inputs or outputs for one scan while
the program is running. This function can be used in conjunction with the Suspend I/O function
(Section 3.5.8.3), which stops the normal I/O scan. It can also be used to update selected I/O during
the program, in addition to the normal I/O scan.

This function provides PLC variable access along with reference addresses having 32-bit offset as
input. To specify a PLC variable as an input to a routine, use the PLC_VAR_MEM memory type and
the address of the variable record as the offset. For details, see Section 3.5.10.1, PLC_VAR_MEM.

InParam pDoIoRec

A pointer to the Do I/O Extn record.

ReturnVal

 1 if successful

 0 if unsuccessful

-1 if not supported

Errno

Sets Errno if input memory or alt memory is out of range. See cpuErrno.h for possible values.

Chapter 3. Writing a C Application

GFK-2259F October 2017 101

3.5.8.3 PLCC_sus_io

T_INT32 PLCC_sus_io(void);

Description

This function is used to stop normal I/O scans from occurring for one CPU sweep. During the next
output scan, all outputs are held at their current states. During the next input scan, the input
references are not updated with data from inputs. However, during the input scan portion of the
sweep the CPU will verify that Genius Bus Controllers have completed their previous output updates.

Note: This function suspends all I/O, both analog and discrete, whether rack I/O or Genius I/O.

ReturnVal

The PLCC_sus_io function returns a 1 if successful, 0 if unsuccessful.

Chapter 3. Writing a C Application

102 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.8.4 PLCC_scan_set_io

Note: CPU firmware version 5.00 or higher is required for this function.

struct scan_set_io_rec{
 T_BOOLEAN scan_inputs;
 T_BOOLEAN scan_outputs;
 T_UINT16 scan_set_number;
};

extern T_INT32 PLCC_scan_set_io(struct scan_set_io_rec *pScanSetIoRec);

Description

This function scans the I/O of a specified scan set number. (Modules can be assigned to scan sets in
hardware configuration.) You can specify whether the Inputs and/or Outputs of the associated scan
set will be scanned.

Execution of this function block does not affect the normal scanning process of the corresponding
scan set. If the corresponding scan set is configured for non-default Number of Sweeps or Output
Delay settings, they remain in effect regardless of how many executions of the Scan Set IO function
occur in any given sweep.

The Scan Set IO function skips modules that do not support DO_IO scanning. For details, see Control
Functions in the PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-2222.

InParam pScanSetIo

A pointer to Scan Set IO record.

ReturnVal

The PLCC_scan_set_io function returns one of the following values:

1 if successful

0 if unsuccessful

-1 if not supported

Chapter 3. Writing a C Application

GFK-2259F October 2017 103

3.5.9 Miscellaneous General Functions
The following miscellaneous functions are described in ctkPlcFunc.h.

3.5.9.1 PLCC_SNP_ID

T_INT PLCC_SNP_ID (T_BYTE request_type, char id_str_ptr);

/* Valid “request_type” values */#define READ_ID 0
#define WRITE_ID 1

Description

This function will read or write the SNP ID string passed in through id_str_ptr to the PLC. The string
should be an eight-character buffer (space for seven letters and a NULL termination).

InParam request_type

Indicates whether the SNP Id should be read or written.

InParam id_str_ptr

Pointer to character buffer that contains the id to write or receives the current id. This buffer needs
to be allocated by the caller.

ReturnVal

This function returns 1 if successful, 0 if unsuccessful, and -1 if unsupported.

Chapter 3. Writing a C Application

104 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.9.2 PLCC_read_override

T_INT32 PLCC_read_override (BYTE seg_sel, WORD ref_num, WORD len,
 BYTE *data);

/* Valid “seg_sel” values */
#define I_OVR I_MEM /* this was 0 for the 90-70 C Toolkit */
#define Q_OVR Q_MEM /* this was 1 for the 90-70 C Toolkit */
#define M_OVR M_MEM /* this was 2 for the 90-70 C Toolkit */
#define G_OVR G_MEM /* this was 3 for the 90-70 C Toolkit */

Description

This function reads the override table for the specified type. The read at the offset must be byte-
aligned, that is, ref_num must be set to a value from the following series 1, 9, 17, 33,... The length is
in bytes. The area pointed to by data must be large enough to hold the amount being read.

InParam seg_sel

Indicates the segment selector of the table to get the override values. For example, use %I segment
selector to access the override table associated with %I.

InParam ref_num

Indicates which reference number to start reading from the override table. The address should be
byte aligned for discrete memory (1, 9, 17 etc).

InParam len

Indicates the number of bytes to read from the override table starting from ref_num

OutParam data

Pointer to memory location to put the requested override data.

ReturnVal

This function returns:

 -0 if successful
 -2 bad_memory_type
 -3 offset_not_byte_aligned
 -4 reading_outside_ref_mem
 -5 bad_data_pointer

Chapter 3. Writing a C Application

GFK-2259F October 2017 105

3.5.10 Reference Memory Functions
The functions in this section are used to access PLC reference memory. These functions properly
take into account transitions and overrides. In addition, they perform memory range checking.
These functions are described in ctkRefMem.h. When specifying the “Ref Table” input parameter, use
the following values:

Ref Table Name Ref Table ID Value
R_MEM 8
AI_MEM 10
AQ_MEM 12
W_MEM 196
I_MEM 16
Q_MEM 18
T_MEM 20
M_MEM 22
SA_MEM 24
SB_MEM 26
SC_MEM 28
S_MEM 30
AI_DIAG_MEM 40
AQ_DIAG_MEM 42
G_MEM 56
I_BIT 70
I_DIAG_MEM 110
Q_DIAG_MEM 112
I_TRANS_MEM 132
Q_TRANS_MEM 134
T_TRANS_MEM 136
M_TRANS_MEM 138
SA_TRANS_MEM 140
SB_TRANS 142
SC_TRANS_MEM 144
S_TRANS_MEM 146
G_TRANS_MEM 148
RPT_FLT_MEM 188
NULL_SEGSEL 0xff
PLC_VAR_MEM 262

3.5.10.1 PLC_VAR_MEM

PLC_VAR_MEM is used for PLC variable access. When PLC_VAR_MEM is used, the offset should be
the address of the PLC variable record. This memory type must be used on a routine that supports a
32-bit offset.

For example:

mask_io_intr_ext_rec.action = MASK;

mask_io_intr_ext_rec.memory_type = PLC_VAR_MEM;

mask_io_intr_ext_rec.memory_offset = &myVarRec;

The variables used must be internally or externally published in the PLC. If they are not published,
store to the PLC will fail.

Chapter 3. Writing a C Application

106 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.10.2 WritePlcByte

T_INT32 WritePlcByte(T_WORD RefTable, T_DWORD offset, T_BYTE writeValue,

 T_BOOLEAN msbByte);

Description

This function writes to reference memory taking into account overrides and transition bits. A byte of
reference memory in the specified Reference Table (RefTable) and at the specified "offset" is written
with the "writeValue".

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write.

Note: the offset is 1-based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001.

InParam writeValue

The value to write to the specified reference table and offset.

InParam msbByte

For word references, determines whether the byte is written to the most significant byte (msbByte =
TRUE) or to the least significant byte (msbByte = FALSE).

ReturnVal

If the "RefTable" or "offset" are out of range, no reference memory values are changed and the
function returns GEF_ERROR. If the "offset" is within range, the function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 107

3.5.10.3 ReadPlcByte

T_BYTE ReadPlcByte (T_WORD RefTable, T_DWORD offset, T_BOOLEAN msbByte);

Description

A byte of reference memory in the specified Reference Table (RefTable) and at the specified "offset"
is read and returned by the function. Errno is set if there is an error reading the value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read.

Note: The offset is 1-based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

InParam msbByte

For word references, determines whether the byte is read from the most significant byte (msbByte =
TRUE) or to the least significant byte (msbByte = FALSE).

ReturnVal

The value read from the specified reference table at the specified offset.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

108 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.10.4 WritePlcWord

T_INT32 WritePlcWord(T_WORD RefTable, T_DWORD offset, T_WORD writeValue);

Description

This function writes to reference memory taking into account overrides and transition bits. A word
(16 unsigned bits) of reference memory in the specified Reference Table (RefTable) and at the
specified "offset" is written with the "writeValue".

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write.

Note: The offset is 1-based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

InParam writeValue

The value to write to the specified reference table and offset

ReturnVal

If the "RefTable" or "offset" are out of range, no reference memory values are changed and the
function returns GEF_ERROR. If the "offset" is within range, the function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 109

3.5.10.5 ReadPlcWord

T_WORD ReadPlcWord (T_WORD RefTable, T_DWORD offset);

Description

A word (16 unsigned bits) of reference memory in the specified Reference Table (RefTable) and at the
specified offset is read and returned by the function. Errno is set if there is an error reading the
value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read.

Note: The offset is 1-based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

ReturnVal

The value read from the specified reference table at the specified offset

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

110 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.10.6 WritePlcInt

T_INT32 WritePlcInt(T_WORD RefTable, T_DWORD offset, T_INT16 writeValue);

Description

This function writes to reference memory taking into account overrides and transition bits.
Reference memory in the specified Reference Table (RefTable) and at the specified "offset" is written
with the "writeValue" as a 16-bit signed integer.

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write.

Note: The offset is 1-based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

InParam writeValue

The value to write to the specified reference table and offset

ReturnVal

If the "RefTable" or "offset" are out of range, no reference memory values are changed and the
function returns GEF_ERROR. If the "offset" is within range, the function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 111

3.5.10.7 ReadPlcInt

T_INT16 ReadPlcInt (T_WORD RefTable, T_DWORD offset);

Description

Reference memory in the specified Reference Table (RefTable) and at the specified "offset" is read as
a 16-bit signed integer and returned by the function. Errno is set if there is an error reading the
value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read.

Note: The offset is 1-based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

ReturnVal

The value read from the specified reference table at the specified offset

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

112 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.10.8 WritePlcDint

T_INT32 WritePlcDint (T_WORD RefTable, T_DWORD offset, T_INT32 writeValue);

Description

This function writes to reference memory taking into account overrides and transition bits.
Reference memory in the specified Reference Table (RefTable) and at the specified "offset" is written
with the "writeValue" as a 32-bit signed integer.

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write.

Note: The offset is 1-based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

InParam writeValue

The value to write to the specified reference table and offset

ReturnVal

If the "RefTable" or "offset" are out of range, no reference memory values are changed and the
function returns GEF_ERROR. If the "offset" is within range, the function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 113

3.5.10.9 ReadPlcDint

T_INT32 ReadPlcDint (T_WORD RefTable, T_DWORD offset);

Description

Reference memory in the specified Reference Table (RefTable) and at the specified offset is read as a
32-bit signed integer and returned by the function. Errno is set if there is an error reading the value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read.

Note: The offset is 1-based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

ReturnVal

The value read from the specified reference table at the specified offset.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

114 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.10.10 WritePlcDouble

T_INT32 WritePlcDouble (T_WORD RefTable, T_DWORD offset, T_REAL64 writeValue);

Description

This function writes to reference memory taking into account overrides and transition bits.
Reference memory in the specified Reference Table (RefTable) and at the specified “offset” is written
with the “writeValue” as a 64-bit floating point value.

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write.

Note: The offset is 1-based.

For example, RefTable= R_MEM and offset = 1 accesses %R00001.

InParam writeValue

The value to write to the specified reference table and offset.

ReturnVal

If the “RefTable” or “offset” are out of range, no reference memory values are changed and the
function returns GEF_ERROR. If the “offset” is within range, the function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 115

3.5.10.11 ReadPlcDouble

T_REAL64 ReadPlcDouble (T_WORD RefTable, T_WORD offset);

Description

Reference memory in the specified Reference Table (RefTable) and at the specified offset is read as a
64-bit floating point value and returned by the function. Errno is set if there is an error reading the
value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read.

Note: The offset is 1-based.

For example, RefTable= R_MEM and offset = 1 accesses %R00001.

ReturnVal

The value read from the specified reference table at the specified offset.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

116 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.10.12 PlcMemCopy

T_INT32 PlcMemCopy (void *pDestination, void *pSource, T_DWORD size);

Description

This function copies values from one PLC memory location to another, taking into account overrides
and transition bits if the destination address is in one of the discrete memory tables. The length of
data written is determined by the "size" parameter, which is in units of bytes (8 bits).

InParam pDestination

Pointer to a PLC memory location to be written.

InParam pSource

Pointer to PLC memory to be copied into pDestination memory.

InParam size

Indicates the number of bytes to copy.

ReturnVal

If one of the pointers to memory is a null pointer, the function returns GEF_ERROR. In addition, if the
source or destination is a reference table and the "size" causes the copy operation to go outside the
boundaries of the specified table, the function also returns GEF_ERROR. If the write operation is
successful, the function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give more specific information on what caused the
error. Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already
set by another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 117

3.5.10.13 refMemSize

T_DWORD refMemSize(T_WORD RefTable);

Description

This function returns the size of specified reference memory.

InParam RefTable

Reference table segment selector used to indicate which table to find the size.

ReturnVal

Returns the size of reference memory in word units for word type memories and bits for bit type
memories and in bytes for analog diagnostic memory.

If RefTable is invalid or pRefLocalSegSizeTable pointer is null, the function returns 0. The function can
also return 0 if the memory has been configured with a 0 length.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

118 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.10.14 setBit

T_INT32 setBit(T_WORD RefTable, T_DWORD offset, T_WORD bitNumber);

Description

This function sets the specified bit in reference memory. This function ensures overrides and
transitions are taken into account for bit memory.

InParam RefTable

Reference table segment selector used to indicate which table to access.

InParam offset

Offset to use to clear the bit.

Note: This is 1-based. For example, use 1 to access %I00001.

InParam bitNumber

For word type memories, this determines which bit to set. For bit type memories, this input is
ignored. This is 1-based with a range of 1 to 16. For example, use 1 to set the least significant bit in a
word memory.

ReturnVal

The function returns GEF_OK if the offset is within range or GEF_ERROR if the offset is out of range.
In the GEF_ERROR case, the specified bit is not changed.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 119

3.5.10.15 clearBit

T_INT32 clearBit(T_WORD RefTable, T_DWORD offset, T_WORD bitNumber);

Description

This function clears the specified bit in reference memory. This function ensures overrides and
transitions are taken into account for bit memory.

InParam RefTable

Reference table segment selector used to indicate which table to access.

InParam offset

Offset to use to clear the bit.

Note: This is 1-based. For example, use 1 to access %I00001.

InParam bitNumber

For word type memories, this determines which bit to clear. For bit type memories, this input is
ignored. This is 1-based with a range of 1 to 16. For example, use 1 to clear the least significant bit in
a word memory.

ReturnVal

The function returns GEF_OK if the offset is within range or GEF_ERROR if the offset is out of range.
In the GEF_ERROR case, the specified bit is not changed.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

120 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.10.16 rackX

T_DWORD rackX(T_BYTE rackNumber);

Description

Returns the rack fault summary bit in the rack slot reference record based on the rackNumber. Only
the first bit is significant. This indicates whether one or more modules in the rack are faulted.

InParam rackNumber

Indicates which rack to get the fault summary bit from. rackNumber is 0 based and the maximum
number of racks is specified in model_specifics.h

ReturnVal

Returns the rack fault summary bit for the requested rack in bit 0.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 121

3.5.10.17 slotX

T_DWORD slotX(T_BYTE rackNumber, T_DWORD slotNumber);

Description

Returns the fault bit for the specified slot and rack in the least significant bit.

InParam rackNumber

Indicates which rack to use to get the fault bit. rackNumber is 0 based and the maximum number of
racks is specified in model_specifics.h

InParam slotNumber

Indicates which slot to use to get the fault bit. slotNumber is 0 based and the maximum number of
racks is specified in model_specifics.h

ReturnVal

Returns the fault bit for the requested rack and slot in bit 0.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

122 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.10.18 blockX

T_DWORD blockX(T_BYTE rackNumber, T_DWORD slotNumber,

 T_DWORD busNumber, T_DWORD sbaNumber);

Description

Returns the module fault reference bit for a particular block on the bus in the least significant bit.

InParam rackNumber

Indicates which rack to use to get the module fault reference bit. rackNumber is 0 based and the
maximum number of racks is specified in model_specifics.h

InParam slotNumber

Indicates which slot to use to get the module fault reference bit. slotNumber is 0 based and the
maximum number of racks is specified in model_specifics.h

InParam busNumber

Indicates which bus to use to get the module fault reference bit. Valid values are 1 or 2.

InParam sbaNumber

Indicates which serial bus offset to use to get the module fault reference bit.

sbaNumber is 0 based and the maximum number of modules per bus is specified in
model_specifics.h

ReturnVal

Returns the module fault reference bit for the requested rack, slot, bus and serial bus address in bit
0.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 123

3.5.10.19 rsmb

RACK_REFERENCE_REC *rsmb(T_BYTE rackNumber);

typedef struct
{
 T_DWORD RackFlags;/* Summary and failure flags */
 T_DWORD SlotFaults;/* All 32 bits of Dword for slot fault bits*/
 T_DWORD BusRefs[MAX_NUM_BUSES_PER_SLOT]; /* Bus fault bits */
 T_BYTE ModRefs[MAX_NUM_BUSES_PER_SLOT][LIMIT_NUM_SLOTS_PER_RACK]
 [MAX_NUMBER_MODULES_PER_BUS/8];
} RACK_REFERENCE_REC;

/* Definitions and Masks Used with RACK_REFERENCE_REC structure.
 Note: LIMIT_NUM_SLOTS_PER_RACK & MAX_NUMBER_MODULES_PER_BUS
 are defined in model_specifics.h */
#define MAX_NUM_BUSES_PER_SLOT 2
#define REF_RACK_SUMMARY_FLAG 0x01
#define REF_RACK_FAILURE_FLAG 0x02

Description

Returns a pointer to a RACK_REFERENCE_REC structure for the specified rack.

The RACK_REFERENCE_REC provides a structure to determine the location of faults anywhere in a
single rack in the PLC system. The following notes provide details on how to use the structure when
the return value is assigned to a pointer named pRackRefRec.

Notes:

1. pRackRefRec RackFlags If bit 0 is set, there is at least one module in the rack system with a
fault. If bit 1 is set, the rack has a fault.

2. pRackRefRecSlot Each bit of this 32-bit variable represents 1 of 32 possible slots in
the rack. If a bit is set (1), it indicates the module in the slot
corresponding to the bit number (0—31) has a fault. For example, if
pRackRefRec->Slot equals 0x0000000A, modules in slots 1 and 3
have faults because the 1st and 3rd bits are set.

3. pRackRefRecBusRefs[0]
(for bus 1) or

pRackRefRecBusRefs[1]
(for bus 2)

Each bit of this 32-bit variable represents one of two possible
busses on 1 of 32 possible slots in the rack. The bit is set if any
modules on the bus have a fault. For example, if a Genius block on
bus 1 has a fault for a GBC located in slot 3, the value of

pRackRefBusRefs[0], assuming no other faulted modules, would
be 0x000000008.

4. pRackRefRecModRefs[BusNumber
][SlotNumber][ModuleBytePosition]

This gives an 8-bit variable where each bit represents whether a
module on a bus connected to a rack based module in a slot has a
fault. BusNumber can be a value of 0 or 1 for bus1 or bus2
respectively. SlotNumber can be a value from 0 to 31 representing
the slot of the module that supports one of the busses.
ModuleBytePosition is a value from 0 to 31 where each value
represents 8 modules. For example, if ModuleBytePosition equals 0,
it represents fault bits for modules at bus addresses 0 through 7. A
value of 1 represents bus addresses 8 to 15, and so forth.

If a slot-based I/O modules does not have a bus associated with it,
and if the modules has a fault, all BusRefs and ModRefs bits
associated with that slot will be set.

Chapter 3. Writing a C Application

124 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

InParam rackNumber

Indicates which rack to use. rackNumber is 0 based and the maximum number of racks is specified
in model_specifics.h

ReturnVal

Returns pointer to a RACK_REFERENCE_REC structure.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 125

3.5.11 Utility Function
The following utility function is described in ctkPLCUtil.h.

3.5.11.1 PLCC_Crc16Checksum

T_WORD PLCC_Crc16Checksum(T_BYTE *pFirstByte, T_DWORD length,

 T_WORD currentCrcValue);

Description

This function calculates a CRC16 checksum over the given area with the given starting value and
length in bytes. The currentCrcValue is normally 0. When checking a large memory range section by
section, you can use the previous section's CRC value as the initial value.

InParam pFirstByte

Pointer to the first byte to include in the checksum

InParam length

Length of data in units of bytes to calculate the checksum

InParam currentCrcValue

The initial CRC value from the previous CRC calculation when creating CRC over multiple sections.

ReturnVal

Returns the CRC16 checksum.

Errno

This function sets Errno if pFirstByte is a null pointer. See cpuErrno.h for possible values.

Chapter 3. Writing a C Application

126 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.12 Errno Functions
Some functions provide status by setting a global errno variable. To effectively examine the value of
errno, you should:

1. Call PLCC_ClearErrno to make sure errno was not set by a previous function call.

2. Call the desired function that can potentially set errno.

3. Call PLCCGetErrno to get the current errno value.

Any non-zero errno value indicates an error. The errno definitions are described in

cpuErrno.h. (\Targets\CommonFiles\IncCommon\PlcInc) and

Errno.h (\Targets\CommonFiles\IncCommon\VxCommon).

The PLCC Errno Functions are described in ctkPlcErrno.h.

3.5.12.1 PLCC_GetErrno

int PLCC_GetErrno(void);

Description

This function returns the errno value in the current context. The errno value is an error code set by
the last PLC Target Library or C Run Time Library function to declare an error.

ReturnVal

Returns the errno value.

3.5.12.2 PLCC_ClearErrno

void PLCC_ClearErrno(void);

Description

This function sets the Errno value in the current context to 0.

Chapter 3. Writing a C Application

GFK-2259F October 2017 127

3.5.13 PLC Variable Access
The C toolkit can access PLC variables, which are declared on the PLC and can be managed
variables, I/O variables, or mapped variables. This section describes the macros and external
functions (externs) used for accessing PLC variables. These macros and functions are described in
ctkVariables.h

Notes:

• When reading/writing non-array variables or individual elements of arrays for user data
types, coherency will be guaranteed for the entire read or write.

• For string variables, the data is not guaranteed to be coherent.

• When reading/writing non-boolean array variables, coherency will be guaranteed for each
individual element of the array.

• This feature is supported only on versions 3.50 and later.

Chapter 3. Writing a C Application

128 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.13.1 Type and Structure Definitions

PLC_VAR

#define PLC_VAR(VariableRecord, PlcVariableName) PLC_VAR_ENTRY_RECORD(VariableRecord,
PlcVariableName)

Description

This macro is used to create a reference to a PLC variable in C logic. These should be declared as
variables global to the C applications. All variables used in C applications must be internally or
externally published in the PLC.

InParam VariableRecord

Name for a reference variable of type PLC_VAR_REC that will be used to reference the PLC variable
when calling routines in this module. This input parameter must be a valid "C" variable name.

InParam PlcVariableName

Exact name of the PLC variable to be accessed within quotes (for example, "myPlcVar").

Example 1

For a PLC variable named motorPosition:

 PLC_VAR(motorPositionRec, "motorPosition");

To use this in multiple C files for a single application, place the following extern statement in a
header file:

 extern PLC_VAR_REC motorPositionRec;

Example 2

For a 3 x 5 array of WORDs named algDiagnostics:

 PLC_VAR(algDiagnosticRec, "algDiagnostics");

When calling ReadPlcVar and WritePlcVar with this declaration, the entire 3 x 5 array is read/written.
ReadPlcArrayVarElement and WritePlcArrayVarElement can be used to access individual elements
of the array.

Example 3

For a 3 x 5 array of WORDs named algDiagnostics where access to a single element is needed:

 PLC_VAR(algDiagnosticElemRec, "algDiagnostics[2,1]");

When calling ReadPlcVar and WritePlcVar with this declaration, a single word is read/written.
ReadPlcArrayVarElement and WritePlcArrayVarElement called with this declaration would return an
error.

Example 4

For an array of custom structures named mainValves with a member flowRate:

 PLC_VAR(mainValveFlowRateRec, "mainValves[3,4].flowRate");

Members of structures must be accessed independently. Declaring a PLC_VAR with only
"mainValves" or "mainValves[3,4]" will result in an error when attempting to store logic.

Chapter 3. Writing a C Application

GFK-2259F October 2017 129

PLC Var 'C' Types

typedef T_BYTE PLC_VAR_BYTE;

typedef T_WORD PLC_VAR_WORD;

typedef T_INT16 PLC_VAR_INT;

typedef T_UINT16 PLC_VAR_UINT;

typedef T_DWORD PLC_VAR_DWORD;

typedef T_INT32 PLC_VAR_DINT;

typedef float PLC_VAR_REAL;

typedef T_BOOLEAN PLC_VAR_BOOL; /* This should be used for a single BOOL variable
only. PLC_VAR_BYTE should be used for arrays of BOOLs because the bits are packed into bytes.
*/

Chapter 3. Writing a C Application

130 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.5.13.2 Routines

Proc ReadPlcVar

extern T_INT32 ReadPlcVar(PLC_VAR_REC *pVarInfo, void *pReadTo);

Description

This function reads the value of a PLC variable into a buffer provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be read.

InParam pReadTo

Pointer to the memory location where the value of the variable to be read should be located.

Note: If pVarInfo references an array, the entire array will be read.

Notes:

• For type BOOL, an entire byte will be written to pReadTo with the low bit of the byte
containing the value of the BOOL variable. The remaining seven bits are zero filled.

• For an array of type BOOL, the number of bytes written will be (total number of elements + 7)
/ 8. The first bit will be written to the least significant bit of the first byte. The data written will
be byte aligned even if the PLC variable is not. Bits that are not part of the array are zero
filled.

• For type BYTE, an 8-bit value will be written to pReadTo (BYTEs mapped to non-discrete
memories, such as %R or %W, consume 16 bits on the PLC, but will be packed when written
to pReadTo by this routine).

• For type STRING, the size in bytes of the data written to pReadTo will be the "max length" in
the variables declaration on the PLC.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 131

Proc ReadPlcArrayVarElement

extern T_INT32 ReadPlcArrayVarElement(PLC_VAR_REC *pVarInfo,

 void *pReadTo,

 T_INT32 numIndices,

 ...);

Description

This function reads the value of a single element in a PLC array variable into a buffer provided by the
caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element to be read.

InParam pReadTo

Pointer to the memory location where the value of the variable to be read is located.

Notes:

• For type BOOL, an entire byte will be written to pReadTo with the low bit of the byte
containing the value of the BOOL variable.

• For type BYTE, an 8-bit value will be written to pReadTo regardless of whether the array is in
discrete or non-discrete memory on the PLC (BYTEs mapped to non-discrete memories, such
as %R or %W, consume 16 bits on the PLC).

• For type STRING, the size in bytes of the data written to pReadTo will be the "max length" in
the variables declaration on the PLC.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater than zero and
must match the number of dimensions of the variable declared on the PLC.

InParam <indices>

A variable number of indices (must match numIndices) indicating the element of the array to be
read. These should be T_INT32 type.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are provided in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

132 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc ReadPlcVarDiag

extern T_INT32 ReadPlcVarDiag(PLC_VAR_REC *pVarInfo, void *pReadDiagsTo);

Description

This function reads the diagnostic value(s) for a PLC variable into a buffer provided by the caller. If
the variable does not have diagnostics, an error will be returned. Variables of type STRING are
invalid and will return an error.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be read.

InParam pReadDiagsTo

Pointer to the memory location where the diagnostic values of the variable should be written.

Notes:

• If pVarInfo references an array, the diagnostics for the entire array will be read.

• For type BOOL, an entire byte will be written to pReadDiagsTo with the low bit of the byte
containing the diagnostic value of the BOOL variable.

• For an array of type BOOL, the number of bytes written will be (total number of elements + 7)
/ 8. The first diagnostic bit will be written to the least significant byte of the first byte.

• For type BYTE and BYTE arrays, there will be one byte of diagnostic written for every byte
element.

• For all other types, the number of bytes written will be the byte size of the PLC variable
divided by 2 if the variable is in non-discrete memory. For example, an array of 8 words
would have 8 bytes of diagnostic data. If the variable is discrete memory, the number of
bytes written will be equal to the size of the array variable in bytes.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are provided in
ctkPlcErrno.h.

Bit Masks to be Used with Diagnostics

These bit masks are defined in ctkRefMem.h.

For access to analog input diagnostic memory:

HI_ALARM_MSK 0x02

LO_ALARM_MSK 0x01

AI_OVERRANGE_MSK 0x08

AI_UNDERRANGE_MSK 0x04

For access to analog output diagnostic memory:

AQ_OVERRANGE_MSK 0x40

AQ_UNDERRANGE_MSK 0x20

Chapter 3. Writing a C Application

GFK-2259F October 2017 133

Proc ReadPlcArrayVarElementDiag

extern T_INT32 ReadPlcArrayVarElementDiag(PLC_VAR_REC *pVarInfo,

 void *pReadDiagsTo,

 T_INT32 numIndices,

 ...);

Description

This function reads the diagnostic values for a single element in a PLC array variable into a buffer
provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element whose
diagnostics are to be read. If the variable does not have diagnostics, an error will be returned. Arrays
of STRINGs are invalid and will return an error.

InParam pReadDiagsTo

Pointer to the memory location where the diagnostic values are to be written.

Notes:

• For type BOOL, an entire byte will be written to pReadDiagsTo with the low bit of the byte
containing the diagnostic value of the BOOL variable.

• For type BYTE, 8 bits of diagnostics will be written to pReadTo regardless of whether the
array is in discrete or non-discrete memory on the PLC.

• For all other types, if the variable is in non-discrete memory, the number of bytes written will
be the byte size of the array element divided by 2.

For example, an element from an array of words would be 1 byte of diagnostic data. If the variable
is discrete memory, the number of bytes written will be equal to the size of an array element in
bytes.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater than zero and
must match the number of dimensions of the variable declared on the PLC.

InParam <indices>

A variable number of indices (must match numIndices) that indicates the element of the array for
which diagnostics is to be read. These should be T_INT32 type.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are provided in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

134 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Bit Masks to be Used with Diagnostics

These bit masks are defined in ctkRefMem.h.

For access to analog input diagnostic memory:

HI_ALARM_MSK 0x02

LO_ALARM_MSK 0x01

AI_OVERRANGE_MSK 0x08

AI_UNDERRANGE_MSK 0x04

For access to analog output diagnostic memory:

AQ_OVERRANGE_MSK 0x40

AQ_UNDERRANGE_MSK 0x20

Chapter 3. Writing a C Application

GFK-2259F October 2017 135

Proc ReadPlcVarOvr

extern T_INT32 ReadPlcVarOvr(PLC_VAR_REC *pVarInfo, void *pReadOvrTo);

Description

This function reads the override value(s) for a PLC variable into a buffer provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be read. If the variable does not
have overrides, an error will be returned.

InParam pReadOvrTo

Pointer to the memory location where the override values for the variable should be written.

Note: If pVarInfo references an array, the overrides for the entire array will be read.

Notes:

• For type BOOL, an entire byte will be written to pReadOvrTo with the low bit of the byte
containing the override value for the BOOL variable.

• For an array of type BOOL, the number of bytes written will be (total number of elements + 7)
/ 8. The first override bit will be written to the least significant byte of the first byte.

• For all other types, the number of bytes written will be equal to the byte size of the PLC
variable.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are provided in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

136 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc ReadPlcArrayVarElementOvr

extern T_INT32 ReadPlcArrayVarElementOvr(PLC_VAR_REC *pVarInfo,

 void *pReadOvrTo,

 T_INT32 numIndices,

 ...);

Description

This function reads the override value(s) for a single element in a PLC array variable into a buffer
provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element whose
diagnostics are to be read. If the variable does not have overrides, an error will be returned.

InParam pReadOvrTo

Pointer to the memory location where the override values are to be written.

Notes:

• For type BOOL, an entire byte will be written to pReadOvrTo with the low bit of the byte
containing the override value for the BOOL variable.

• For all other types, the number of bytes written will be equal to the byte size of an element in
the PLC array variable.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater than zero and
must match the number of dimensions of the variable declared on the PLC.

InParam <indices>

A variable number of indices (must match numIndices) indicating the element of the array for which
diagnostics are to be read. These should be T_INT32 type.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are provided in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 137

Proc ReadPlcVarTrans

extern T_INT32 ReadPlcVarTrans(PLC_VAR_REC *pVarInfo, void *pReadTransTo);

Description

This function reads the transition value(s) for a PLC variable into a buffer provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be read. If the variable does not
have transitions, an error will be returned.

InParam pReadTransTo

Pointer to the memory location where the transition values for the variable should be written.

Note: If pVarInfo references an array, the transitions for the entire array will be read.

Notes:

• For type BOOL, an entire byte will be written to pReadTransTo with the low bit of the byte
containing the transition value for the BOOL variable.

• For an array of type BOOL, the number of bytes written will be

(total number of elements + 7) / 8.

The first transition bit will be written to the least significant byte of the first byte.

• For all other types, the number of bytes written will be equal to the byte size of the PLC
variable.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

138 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc ReadPlcArrayVarElementTrans

extern T_INT32 ReadPlcArrayVarElementTrans(PLC_VAR_REC *pVarInfo,

 void *pReadTransTo,

 T_INT32 numIndices,

 ...);

Description

This function reads the transition value(s) for a single element in a PLC array variable into a buffer
provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element whose
diagnostics are to be read. If the variable does not have transitions, an error will be returned.

InParam pReadTransTo

Pointer to the memory location where the transition values are to be written.

Notes:

• For type BOOL, an entire byte will be written to pReadTransTo with the low bit of the byte
containing the transition value for the BOOL variable.

• For all other types, the number of bytes written will be equal to the byte size of an element in
the PLC array variable.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater than zero and
must match the number of dimensions of the variable declared on the PLC.

InParam <indices>

A variable number of indices (must match numIndices) indicating the element of the array for which
diagnostics are to be read. These should be T_INT32 type.

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are provided in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 139

Proc WritePlcVar

extern T_INT32 WritePlcVar(PLC_VAR_REC *pVarInfo, void *pWriteFrom);

Description

This function writes a value to a PLC variable from the buffer provided by the caller. This routine
accounts for overrides and transitions when applicable.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be written.

InParam pWriteFrom

Pointer to the memory location of the value(s) to be written to the PLC variable.

Note: If pVarInfo references an array, the entire array will be written.

Notes:

• For type BOOL, the least significant bit at the byte pointed to by pWriteFrom will be written
to the PLC variable.

• For an array of type BOOL, the bits will be copied starting at the least significant bit of the
byte pointed to by pWriteFrom.

• For type BYTE, an 8-bit value will be read from pWriteFrom (For non-discrete memories
where the BYTE variable consumes 16 bits on the PLC the 8-bit value will be written to the
least significant 8 bits of the 16-bit word).

• For type STRING, the size of the data copied from pWriteFrom will be the "max length" in the
variables declaration.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are provided in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

140 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc WritePlcArrayVarElement

extern T_INT32 WritePlcArrayVarElement(PLC_VAR_REC *pVarInfo,

 void *pWriteFrom,

 T_INT32 numIndices,

 ...);

Description

This function writes a single element in a PLC array variable from a buffer provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element to be written.

InParam pWriteFrom

Pointer to the memory location containing the value to be written to the array element.

Notes:

• For type BOOL, the least significant bit at the byte pointed to by pWriteFrom will be written
to the PLC variable array element.

• For type BYTE, an 8-bit value will be read from pWriteFrom (For non-discrete memories
where the BYTE variable consumes 16 bits on the PLC the 8-bit value will be written to the
least significant 8 bits of the 16-bit word).

• For type STRING, the size of the data copied from pWriteFrom will be the "max length" in the
variables declaration.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater than zero and
must match the number of dimensions of the variable declared on the PLC.

InParam <indices>

A variable number of indices (must match numIndices) indicating the element of the array to be
written. These should be T_INT32 type.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are located in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

GFK-2259F October 2017 141

Proc PlcVarMemCopy

extern T_INT32 PlcVarMemCopy(PLC_VAR_REC *pDestVarInfo,

 PLC_VAR_REC *pSrcVarInfo);

Description

This function copies the contents of one PLC variable to another PLC variable of the same type and
size. The size of the destination variable must be greater than or equal to the size of the source
variable. No other type or bounds checking will be done.

InParam pDestVarInfo

Pointer to a PLC_VAR_REC information record for the destination variable.

InParam pSrcVarInfo

Pointer to a PLC_VAR_REC information record for the destination variable.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused the error.
Applications that use Errno should first call PLCC_ClearErrno to ensure Errno was not already set by
another function call. Errno can be read using PLCC_GetErrno. Errno values are provided in
ctkPlcErrno.h.

Chapter 3. Writing a C Application

142 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc PlcVarType

typedef enum

{

 PLC_BOOL_VAR_TYPE = 0,

 PLC_BYTE_VAR_TYPE = 13,

 PLC_WORD_VAR_TYPE = 14,

 PLC_INT_VAR_TYPE = 25,

 PLC_UINT_VAR_TYPE = 26,

 PLC_DWORD_VAR_TYPE = 18,

 PLC_DINT_VAR_TYPE = 1,

 PLC_REAL_VAR_TYPE = 27,

 PLC_STRING_VAR_TYPE = 24,

 PLC_INVALID_VAR_TYPE = 0xFFFFFFFF

} PLC_VAR_TYPES;

extern T_DWORD PlcVarType(PLC_VAR_REC *pVarInfo);

Description

This function returns the type value for a PLC variable.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal varType

Value defining the type of the PLC variable. Returns PLC_INVALID_VAR_TYPE if input is NULL.

Chapter 3. Writing a C Application

GFK-2259F October 2017 143

Proc PlcVarSizeof

extern T_DWORD PlcVarSizeof(PLC_VAR_REC *pVarInfo);

Description

This function returns the total size of a PLC variable. If the variable is a BOOL or array of BOOLS, the
size is in bits. For all other types, the size is in bytes.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal size

Size in bits for BOOLs/Arrays of BOOLs. Size in bytes for all other types. Zero is returned for NULL
input pointer.

Note: BYTE arrays in non-discrete memory are not packed on the PLC, so each byte occupies 16 bits of PLC

memory. This routine will return the size in bytes as if the byte array were packed, not the size of the

memory occupied on the PLC.

Chapter 3. Writing a C Application

144 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc PlcVarSizeofDiag

extern T_DWORD PlcVarSizeofDiag(PLC_VAR_REC *pVarInfo);

Description

This function returns the total size of the diagnostic memory for a PLC variable. If the variable is a
BOOL or array of BOOLS, the size is in bits. For all other types, the size is in bytes.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal size

Size in bits for BOOLs/Arrays of BOOLs. Size in bytes for all other types. Zero is returned for NULL
input pointer.

Note: BYTE arrays in non-discrete memory are not packed on the PLC, therefore each byte occupies 16 bits

of PLC memory. This routine will return the size in bytes as if the byte array were packed, not the size

of the memory occupied on the PLC.

Chapter 3. Writing a C Application

GFK-2259F October 2017 145

Proc PlcVarSizeofOvr

extern T_DWORD PlcVarSizeofOvr(PLC_VAR_REC *pVarInfo);

Description

This function returns the total size of the override memory for a PLC variable. If the variable is a
BOOL or array of BOOLS, the size is in bits. For all other types, the size is in bytes.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal size

Size in bits for BOOLs/Arrays of BOOLs. Size in bytes for all other types. Zero is returned for NULL
input pointer.

Note: BYTE arrays in non-discrete memory are not packed on the PLC, so each byte occupies 16 bits of PLC

memory. This routine returns the size in bytes as if the byte array were packed, not the size of the

memory occupied on the PLC.

Chapter 3. Writing a C Application

146 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc PlcVarSizeofTrans

extern T_DWORD PlcVarSizeofTrans(PLC_VAR_REC *pVarInfo);

Description

This function returns the total size of the transition memory for a PLC variable. If the variable is a
BOOL or array of BOOLS, the size is in bits. For all other types, the size is in bytes.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal size

This function returns size in:

Bits for BOOLs/Arrays of BOOLs

Bytes for all other types.

Zero is returned for NULL input pointer.

Note: BYTE arrays in non-discrete memory are not packed on the PLC, so each byte occupies 16 bits of PLC

memory. This routine will return the size in bytes as if the byte array were packed, not the size of the

memory occupied on the PLC.

Chapter 3. Writing a C Application

GFK-2259F October 2017 147

Proc PlcVarNumDimensions

extern T_DWORD PlcVarNumDimensions(PLC_VAR_REC *pVarInfo);

Description

This function returns the number of dimensions for a PLC variable. If the variable is not an array,
zero is returned.

Note: A variable of type STRING will return zero. An array of STRINGs will return non-zero.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal numDimensions

Number of dimensions for array variables, zero for scalar types.

Chapter 3. Writing a C Application

148 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc PlcVarHasDiags

extern T_BOOLEAN PlcVarHasDiags(PLC_VAR_REC *pVarInfo);

Description

This function returns TRUE if the PLC variable supports diagnostics, FALSE if not.

Note: This routine returns TRUE if the variable supports diagnostics regardless of the state of the

diagnostic data.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal

TRUE if the PLC variable has diagnostic values associated with it, FALSE if not.

Chapter 3. Writing a C Application

GFK-2259F October 2017 149

Proc PlcVarHasOverrides

extern T_BOOLEAN PlcVarHasOverrides(PLC_VAR_REC *pVarInfo);

Description

This function returns TRUE if the PLC variable supports overrides, FALSE if not.

Note: This routine returns TRUE if the variable supports overrides regardless of the state of the overrides.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal

TRUE if the PLC variable has override values associated with it, FALSE if not.

Chapter 3. Writing a C Application

150 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc PlcVarHasTransitions

extern T_BOOLEAN PlcVarHasTransitions(PLC_VAR_REC *pVarInfo);

Description

This function returns TRUE if the PLC variable supports transitions, FALSE if not.

Note: This routine returns TRUE if the variable supports transitions regardless of the state of the transitions.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal

TRUE if the PLC variable has transition values associated with it, FALSE if not.

Chapter 3. Writing a C Application

GFK-2259F October 2017 151

Proc PlcVarArrayElementSize

extern T_DWORD PlcVarArrayElementSize(PLC_VAR_REC *pVarInfo);

Description

This function returns the size in bytes of an individual element of an array variable. If the variable is
a BOOL, an array of BOOLs, or not an array, zero will be returned.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal

Size in bytes of an individual array element.

Chapter 3. Writing a C Application

152 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Proc PlcVarArrayBound

extern T_DWORD PlcVarArrayBound(PLC_VAR_REC *pVarInfo, T_DWORD dimension);

Description

This function returns the upper boundary for a given array dimension. For example, if the variable is
a 3 by 5 array, requesting dimension 1 would return 3 and requesting dimension 2 would return 5. If
the variable is not an array or the variable does not have as many dimensions as indicated by the
"dimension" input parameter, zero is returned.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

InParam dimension

Indicates the array dimension to return the bound for.

ReturnVal

Boundary of the requested array dimension.

Chapter 3. Writing a C Application

GFK-2259F October 2017 153

3.6 Application Considerations

When creating a C application, it is necessary to keep in mind a few items regarding the target
PACSystems:

1. How big is each of the target PLC’s reference memories?

2. Will the block be called from the MAIN ladder block or from some other ladder block?

3. How large is the C application likely to be?

All of these questions must be kept in mind while developing C applications. The following sections
provide detail on each of these questions and other questions regarding the creation of C
applications.

3.6.1 Application File Names
Application file names are limited to 31 characters. The first character in the filename must be
alphabetic.

3.6.2 Floating Point Arithmetic
All PACSystems CPUs support floating point math.

Chapter 3. Writing a C Application

154 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.6.3 Available Reference Data Ranges
When a C application uses an index variable to select an element from PLC reference memory via a
reference memory macro, the value of the index variable should always be checked against the size
of the target PLC's reference memory. It is also a good practice to check the size before calling
reference memory functions but is not absolutely necessary because the function will return an
error status or set Errno if the index variable is out of range for the selected memory. The size of any
PLC reference memory can be determined using the corresponding SIZE macro. As an example,
consider the following ladder logic rung and sample block, where the value in %P1 is to be used as
an index into %R memory and the value at %R[%P1] is to be copied to %P2:

3.6.3.1 Range Checking Indirect References Using the SIZE Macros

/* The value at x1 will be used as an index into */
/* register memory. The value at %R(x1) will be */
/* copied to y1. */

int GefMain(T_WORD *x1, T_INT16 *y1)
{

 /* FIRST - check X1 & Y1 != NULL */
 /* SECOND - must range check value at x1 to ensure */
 /* that we will stay within limits of PLC */
 /* %R reference memory. */
 if ((x1 != NULL) && y1 != NULL)) {
 if (*x1 > R_SIZE) return(ERROR);

 /* Range check proved OK ==> go ahead and copy data */
 *y1 = RW(*x1);
 return(GEF_EXECUTION_OK);
 }
 else return (GEF_EXECUTION_ERROR);
}

In the above example, the index *x1 is compared to R_SIZE. If the target PLC contains 1024 registers,
then R_SIZE will evaluate to 1024. If *x1 is greater than 1024 (R_SIZE), the program will return with
the status GEF_EXECUTION_ERROR which indicates that the ENO output of the CALL function block
should be turned OFF. With *x1 greater than R_SIZE, the C block will return with
GEF_EXECUTION_ERROR status and no attempt is made to index into register memory nor to copy
any register memory value to *y1.

Chapter 3. Writing a C Application

GFK-2259F October 2017 155

3.6.4 Global Variable Initialization
Global variables can be used by C applications running in a PACSystems control system. Global
variables are those which are declared outside of a function, typically outside of and before
GefMain(). Both initialized and uninitialized global variables may be used.

T_INT32 xyz; /* uninitialized global var */
T_INT32 abc = 123; /* initialized global var */

int GefMain() {
 xyz = RW(1);
 RI(2) = ++abc;
 return(GEF_EXECUTION_OK);
}

When a C application is compiled and linked to form relocate-able (.gefElf) file, all global variables
have a relative location within the .gefElf image. If the global variable is declared in the C source to
have an initial value, the location in the .gefElf image for that global variable will contain the
initialized value. When a C application is incorporated into a Machine Edition folder and that folder is
stored to a PACSystems CPU, the CPU stores an image of the .gefElf file into user memory with
space pre-allocated for all global variables and with all initialized global variables already containing
their predefined values. Upon storing the .gefElf image, the PLC will make a copy of the data portion
(data portion = initialized global variables).

Once the PLC is placed into RUN mode, the C application may operate upon any of its global
variables. Each of the C application’s global variables will retain its value from one sweep to the next
sweep and will continue to do so until the PLC goes to STOP mode. On the transition from STOP
mode to RUN mode, the PLC will re-initialize all of the C application’s initialized global data to those
values in the saved copy of global data start values. (Recall that the start values were saved when
the folder was stored to the PLC.)

3.6.5 Static Variables
The keyword “static” may be used with either global variables or variables declared inside a function
(including GefMain()). These variables will retain their value from sweep to sweep like global data. If
a static variable is declared with an initial value, the variable will be initialized on the first execution
from store or on transition from STOP to RUN mode. If a static variable is declared without an initial
value, the initial value is undefined and must be initialized by the C application.

Note: If C blocks are used multiple times in a ladder, static or global variables may not contain expected

data from sweep to sweep. Multiple use blocks must at least receive a unique ID for each call or a

unique work area to properly distinguish multiple calls.

Chapter 3. Writing a C Application

156 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.6.6 Data Retentiveness
All global variables and static variables are either retentive or non-retentive. Values of retentive data
are preserved across both power-cycles (assuming a good battery is attached) and stop-to-run
transitions. Non-retentive data is reinitialized on each stop-to-run transitions using values saved
when the application was first stored.

All global and static variables, which are given an initial value, will be non-retentive. In general,
uninitialized global data will be retentive. Since non-retentive data requires twice the memory space
within the CPU (one for the working copy, and one for the saved copy), large initialized data
structures should be avoided if memory usage is a concern.

The following examples illustrate retentive and non-retentive variables.

Examples:

T_INT16 my_var1; /* retentive */

T_INT16 my_var2 = 20; /* non-retentive; reset to 20 on stop-to-run transitions */

static T_INT16 my_var3; /* retentive */

static T_INT16 my_var4 = 12; /* non-retentive, reset to 12 on stop-to-run transitions */

Chapter 3. Writing a C Application

GFK-2259F October 2017 157

3.6.7 GefMain() Parameter Declaration Errors for Blocks
When declaring the parameters to GefMain() in a block, the type, order, and number of parameters
must match the ladder logic call instruction exactly. Use the following ladder logic segment and
associated C block as an example:

/* This rung of ladder logic calls MATH2 to */
/* add the two integers X1 and X2 and place the sum in Y1 */
/* and subtract the integer X2 from the integer X1, placing */
/* the difference in Y2. */

Figure 9: Importance of Matching Parameter Type, Order, and Number

/* MATH2 :
 * This function has two input parameters and two output
 * parameters.
 * Y1 = X1 + X2;
 * Y2 = X1 - X2;
 */

int GefMain(T_INT16 *x1, T_INT16 *x2, T_INT16 *y1, T_INT16 *y2) {
 if (((x1 != NULL) && (y1 != NULL)) &&
 ((x2 != NULL) && (y2 != NULL))) {
 *y1 = *x1 + *x2;
 *y2 = *x1 - *x2;
 return(GEF_EXECUTION_OK);
 }
 else return (GEF_EXECUTION_ERROR);
}

As written above, the example is correct; the ladder logic call and the block declaration match. The
operation of the ladder logic and the block will execute properly.

Chapter 3. Writing a C Application

158 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.6.7.1 Type Mismatch Errors

If, however, the block declaration is changed to the following, execution errors will occur.

int GefMain(T_REAL32 *x1, T_REAL32 *x2, T_REAL32 *y1, T_REAL32 *y2) {
 if (((x1 != NULL) && (y1 != NULL)) &&
 ((x2 != NULL) && (y2 != NULL))) {
 *y1 = *x1 + *x2;
 *y2 = *x1 - *x2;
 return(GEF_EXECUTION_OK);
 }
 else return (GEF_EXECUTION_(ERROR);
}

The block will compile and link without error. The .gefElf file will be added and imported to the
application folder without error. Similarly, the folder will store to the PACSystems CPU without error.
No error will appear until the ladder and block are executed. The ladder logic will call MATH2 passing
pointers to two (2) input parameters and pointers to two (2) output parameters. MATH2 expects two
(2) input parameter pointers and two (2) output parameter pointers. The error occurs because the
ladder logic uses integer variables (16 bits each), but the block uses float variables (32 bits each).
This results in the block using the pointer x1 to read a 32-bit floating point value which starts at %R1
(the value used in the ladder logic). The 32-bit floating point value starting at %R1 includes both %R1
and %R2, but %R2 is the reference specified in ladder logic as x2. Since the input variables overlap,
unpredictable values will result from the execution of this block. Notice also that the output
parameters will have a similar problem.

Chapter 3. Writing a C Application

GFK-2259F October 2017 159

3.6.7.2 Parameter Ordering Errors

Execution errors can also occur due to differences in the order of the parameters when calling a
block and the order of the parameters in the block declaration of GefMain(). Continuing with the
same example, if the ladder logic is unchanged but GefMain() is declared as follows, an execution
error will occur.

int GefMain (T_INT16 *x1, T_INT16 *y1, T_INT16* x2, T_INT16* y2) {
 ...
}

No error message will be generated, just unpredictable output values. The execution error occurs
because ladder logic always passes all of the specified input parameters in top-to-bottom order,
followed by all of the specified output parameters, also in top-to-bottom order. In this case, the
ladder logic passes %R1, %R2, %P1, and %P2, the two input parameters followed by the two output
parameters. The block associates the parameters from the ladder logic call with its own variable
names, as in the following example:

T_INT16 *x1 refers to %R1
T_INT16 *y1 refers to %R2
T_INT16 *x2 refers to %P1
T_INT16 *y2 refers to %P2

When the block executes the statement:

*y1 = *x1 + *x2;

the resulting operation adds the contents of %R1 (*x1) to the contents of %P1 (*x2) and place the
sum in %R2 (*y1), which is not what the ladder logic program expects.

Since the ladder logic call to a block always specifies the parameters in order (inputs 1 to 63) and
(outputs 1 to 63), the block declaration of GefMain() must specify the parameters to GefMain() in
the same order.

Chapter 3. Writing a C Application

160 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.6.7.3 Parameter Number Errors

If the number of parameters associated with a block in ladder logic does not match the number of
parameters in the declaration of GefMain() for the block, potentially severe execution errors will
occur.

Note: It is essential that the number of parameters in a call to a block and the actual number of parameters

required by the called block match; otherwise, the block will use invalid pointer variables to perform

reads and writes.

Again, using our example with the ladder logic portion unchanged, the effect of a difference in the
number of parameters can be illustrated in the following example:

int GefMain (T_INT16 *x1, T_INT16 *y1) {
/* Add the contents of %R1 to the contents pointed to by x1 */
/* and then store the sum in the location pointed to by y1 */
 if ((x1 != NULL) && (y1 != NULL)) {
 *y1 = *x1 + RI(1);
 return(GEF_EXECUTION_OK);
 }
 else return (GEF_EXECUTION_ERROR);
}

In this scenario, the ladder logic call will pass four parameters, %R1, %R2, %P1, and %P2. The block
expects two parameters, x1 and y1, which it will associate with the passed in parameters as follows:

T_INT16 *x1 refers to %R1
T_INT16 *y1 refers to %R2
%P1 and %P2 are not referenced

The operation of this block with regard to parameter x1 is flawless. However, when y1 is used as the
pointer for storing the sum, the sum will be written to %R2, not to %P1. This will cause incorrect
operation of the application.

A more severe scenario is a block declared as follows:

int GefMain (T_INT16 *x1, T_INT16 *x2, T_INT16 *x3, T_INT16 *y1, T_INT16 *y2,
T_INT16*y3) {
/* Add the contents of %Rn to the contents pointed to by xn */
/* and then store the sum in the location pointed to by yn */
 *y1 = *x1 + RI(1);
 *y2 = *x2 + RI(2);
 *y3 = *x3 + RI(3);
 return(GEF_EXECUTION_OK);
}

The above block can have catastrophic results if executed in conjunction with the example ladder
logic rung. Again, the ladder logic call is passing four parameters, a pointer to %R1, a pointer to
%R2, a pointer to %P1, and a pointer to %P2. The C program expects six parameters, all pointers.

Chapter 3. Writing a C Application

GFK-2259F October 2017 161

The block will then associate each of the declared parameters to GefMain() with the pointers passed
from the ladder logic call as follows:

T_INT16 *x1 refers to %R1 /* OK */
T_INT16 *x2 refers to %R2 /* OK */
T_INT16 *x3 refers to %P1 /* error - wrong parameter */
T_INT16 *y1 refers to %P2 /* error - wrong parameter */
T_INT16 *y2 refers to an unknown value on the PLC stack
T_INT16 *y3 refers to an unknown value on the PLC stack

The unknown values on the PLC stack will be used for y2 and y3 and will cause the C program to
write erroneously into PLC memory or cause a page fault. The exact location of the write is
unpredictable.

Note: Always verify that the number of parameters expected by a block and the number the ladder logic

call will pass to that block are the same. Always verify that the parameters are not NULL pointers

before using.

Chapter 3. Writing a C Application

162 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.6.8 Uninitialized Pointers
Use of an uninitialized C pointer variable in your C application can cause catastrophic effects on the
PLC. It is essential that all pointer variables be correctly initialized prior to use by a C application.

 BAD PROGRAM - Uninitialized Pointer

int GefMain() {
 T_BYTE *bad_ptr;
 T_INT16 loop;

 /* Attempt to initialize data area through */
 /* uninitialized pointer. */
 for (loop = 0; loop < 10; loop++) {
 *bad_ptr = 0;
 }

 return(GEF_EXECUTION_OK);
}

Warning

All pointer variables in a C application, including those used by library
functions, must be initialized before they are used, or unpredictable results
will occur. The use of an uninitialized pointer may result in the PACSystems
logging a fatal fault in the controller fault table and going to STOP/HALT
mode.

Uninitialized pointers may also result from a C block user not setting all
required parameters. Check parameter pointers for NULL before using.

Chapter 3. Writing a C Application

GFK-2259F October 2017 163

3.6.9 PLC Local Registers (%P and %L)
C Blocks have access to %P and %L PLC reference memory through several macros or functions
provided in the file PACRxPlc.h in the C Toolkit. When referencing %P and %L from a block, the
following two reference memories appear as two separate tables:

int GefMain() { /* no parameters to GefMain */
 PW(1) = RW(1); /* Copy %R1 to %P1 */
 LW(1) = RW(2); /* Copy %R2 to %L1 */
 return(GEF_EXECUTION_OK);
}

The PLC memory location used as %L or %P is determined by the PACSystems at runtime, based on
the context from which the block was called. If the block is called from the MAIN ladder logic block,
then all %L references inside the block will reference the %P table. The %P table and the %L table
are the same when a block is called from the main block

If, however, the same block is called from a ladder logic program block other than MAIN, the %P and
%L tables will be separate and unique in PLC memory. When the %P and %L tables are separate, all
references to %L will affect only the calling block’s %L table, and all references to %P will affect only
the main program block’s %P table.

When called from the MAIN ladder logic block, the following block will set %P1 equal to %R1 and
then set %L1 equal to %R2:

GefMain() { /* no parameters to GefMain */
 PW(1) = RW(1); /* Copy %R1 to %P1 */
 LW(1) = RW(2); /* Copy %R2 to %L1 */
 return(GEF_EXECUTION_OK);
}

Since %L1 is actually %P1 in this case, this results in %P1 being set to the value contained in %R2.
Again, this is because %P and %L, when used in a block, refer to the same memory table when
called from the MAIN ladder logic block. Conversely, when this same block is called from any ladder
sub-block, the result will be that %P1 equals %R1 and that %L1 equals %R2.

Note: Refer to Section 3.6.16, Blocks as Timed or I/O Interrupt Blocks for an explanation of %P and %L in

interrupt blocks.

3.6.9.1 %P and %L in Ladder Logic

The references %P and %L refer to two of the PLC’s internal memory tables. Each of these types is
word-oriented.

Chapter 3. Writing a C Application

164 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Descriptions of %P and %L

Type Description

%P The prefix %P is used to assign program register references, which will store program
data from the main program block. This data can be accessed from all program blocks.
The size of the %P data block is based on the highest %P reference in all ladder logic
program blocks.

%L The prefix %L is used to assign local register references, which will store data unique to a
ladder logic program block. The size of the %L data block is based upon the highest %L
reference in the associated ladder logic program block.

Both %P and %L user references have a scope associated with them. Each of these references may
be available throughout the logic program, or access to these references may be limited to a single
ladder logic program block.

Data Scope of %P and %L

User Reference Range Scope

%P Program Accessible from any program block.

%L Local Accessible from within a ladder logic block. Also accessible
from any external block called by the ladder logic block.

In a program block, %P should be used for program references which will be shared with other
program blocks. %L are local references which can be used to restrict the use of register data to
that ladder logic program block and any C block called by that ladder logic block. These references
are not available to any other parts of the program.

Chapter 3. Writing a C Application

GFK-2259F October 2017 165

3.6.10 Block Enable Output (ENO)
In ladder logic, the function block CALL, when used with a block as the target, provides a boolean
ENO output. This ENO output from the call is under the direct control of the block.

The ENO output is controlled by the return value from GefMain(). If GefMain() returns a value of
GEF_EXECUTION_OK, the ENO output is turned ON (1). If, however, GefMain() returns a value of
GEF_EXECUTION_ERROR, the CALL function block ENO output is turned OFF (0). (The C symbols
GEF_EXECUTION_OK and GEF_EXECUTION_ERROR are defined in the toolkit file PACRxPlc.h.)

3.6.11 Writes to %S Memory Using SB(x)
The %S table is for the PLC to provide status on its operation. This table is intended to be written only
by the CPU firmware; therefore, it is also intended to be read-only from elsewhere in the system,
specifically from the application program. Attempting to use the SB(x) macro to write into %S
memory will result in a compile error when compiling the application C source file. Similarly,
attempting to use the pointer variable sb_mem (provided in PACRxPlc.h and the same pointer
variable used by the SB(x) macro) will result in the same compile error.

3.6.12 FST_EXE and FST_SCN Macros
In the file PACRxPlc.h (provided in the PACSystems C Toolkit), there are two macros, FST_SCN and
FST_EXE, that provide blocks with direct access to %S0001 (system first scan indication) and with
direct access to the block’s first execution bit. The FST_SCN macro references %S0001 and acts
exactly like the ladder logic reference FST_SCN (%S0001). If a block is not called on the first PLC
sweep, the macro FST_SCN should not be used for initializing data in the block. In this case,
FST_SCN would never be true.

The FST_EXE macro operates differently than the FST_SCN macro. There is no system status bit
associated with the first call to blocks. A block inherits FST_EXE from the block that calls it.
Therefore, if FST_EXE in the calling ladder logic program is true, when the block is executed, the C
macro FST_EXE will also be true. The value of FST_EXE is determined by the calling ladder logic
block, not by the C block. FST_EXE may be TRUE (1) if the block is called multiple times from one
ladder logic block or is called from multiple ladder logic blocks. If the call from the ladder logic to the
block is conditional, it is possible that the block may never see FST_EXE as true.

3.6.13 LST_SCN Macro
The LSC_SCN macro provides access to the %S00002 (system last scan indication) bit. This bit is 1
when the CPU transitions to Run mode and cleared when the CPU is performing its final sweep. The
CPU clears this bit (0) and then performs one more complete sweep before transitioning to Stop or
Stop Faulted mode. If the number of last scans is configured to be 0, %S0002 will be cleared after
the CPU is stopped and user logic will not see this bit cleared.

If a C subroutine is not called on the last scan before a PLC enters Stop mode, the LST_SCN macro
should not be used in that block to capture data or trigger events on the last scan. In such a case,
the data or events would never be triggered because the C subroutine was not called on the last
scan.

Chapter 3. Writing a C Application

166 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

3.6.14 Runtime Error Handling
When a C application executes in a PACSystems CPU, if an error is generated from one of the
runtime library functions or from incorrect interaction between the C application and the CPU, the
error will be detected and logged in the controller fault table as an application fault on the CPU (rack
0, slot 1). Examples of such errors include, but are not limited to the following:

1. Integer divide by 0

2. Stack overflow

3. Page fault

When a runtime error is logged into the controller fault table, the fault will contain a text message
describing the error.

An example of a runtime error and the resulting controller fault is illustrated in the following C
application, DV0.C:

Example:

#include “PACRxPlc.h”

int GefMain() {
 T_INT32 x=3, y=0;

 return(x/y);
}

The faults logged in the CPU and displayed by Machine Edition software appear as follows:

Fault Description: Program runtime error

Fault Extra Data (in ASCII format): Div by 0

3.6.15 C Application Impact on PLC Memory
As displayed on the PC, the size of a .gefElf output file is the relocate-able image.. When the C
application is stored to the CPU, the CPU must allocate more memory than merely the .gefElf size.
The additional space allocated by the CPU includes:

1) The located executable image of the .gefElf file

2) The saved the initial values of C application global data (initialized global data)

3) Pertinent information regarding the C application (internal processing overhead)

4) A copy of the original .gefElf file.

One method of determining the PLC memory usage is to view the status dialog in the programmer
and note the Program Logic usage of the folder stored without the C Block and the same folder
stored with the C Block.

Chapter 3. Writing a C Application

GFK-2259F October 2017 167

3.6.16 Blocks as Timed or I/O Interrupt Blocks
Blocks may be used in the PLC as the target of a timed or I/O interrupt with the following restrictions.

1) A block invoked as the result of a timed, I/O, or module interrupt may not have parameters
associated with the call. The block must have 0 input parameters and 0 output parameters.
A block invoked as a sub block of a timed, I/O, or module interrupt may have parameters
associated with the call.

2) When a block is invoked as a timed, I/O, or module interrupt, all references to %L memory
will reference the same location in the %P table. (This action is the same as when a block is
called directly from the MAIN logic program.) When a block is invoked as the sub block of a
timed, I/O, or module interrupt block, all references to %L memory will be references to the
%L of the block from which they were called.

3) Additional interrupts are not processed while a timed, I/O, or module interrupt blocks and
associated sub blocks are executing if preemptive block scheduling is disabled. The
preemptive block scheduling feature is available on PACSystems firmware revision 2.0 and
greater.

The following example and associated text cover the issues related to using C Blocks when the
same C application is going to be called during the normal execution of the program and from a
possible timed, I/O, or module interrupt.

Some C
Block

Calls
Block 1 Block 2 Interrupt Execution

Calls

Block 3 Block 4 Normal Execution

Figure 10: Interrupt Block Calls and C Blocks/FBKs

In the example shown in Figure 10, two separate execution paths are depicted: normal execution
and interrupt execution. Normal execution is initiated through the standard sweep mechanism of
the operating system calling the _MAIN block. Then through a series of calls to sub-blocks, the
example eventually calls “some C block”. Interrupt execution is initiated by either a timed event or by
an interrupt event (interrupt input) coming into the CPU, causing the operating system to invoke a
block. Note that calling a C block terminates the call chain.

The example in Figure 10 shows that both the Normal Execution path AND the Interrupt Execution
path calling (through a chain of different blocks) the same C block. For this example to work
correctly, the C Block must be designed for re-entrant operation.

Chapter 3. Writing a C Application

168 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

A C Block developer should use the following guidelines to ensure the success of a situation such as
the one illustrated in Figure 10.

1. All variables used by the C Block should be stack-based (automatic) variables.

2. If there is any portion of the Block that operates on PLC global memories (%R, %P, ...etc.), the
Block must contain additional code to handle some sort of hand-shaking between normal
executions and interrupt executions to prevent data incoherency. The hand-shaking could be
accomplished by declaring a global flag (variable) in the Block (or using an application-reserved
location in PLC global memory) that the Block sets just prior to writing to the PLC global
memories and then clears when the update is complete. Execution of the block (regardless of
normal or interrupt) should read the global flag before changing the PLC global memory. If the
flag is set, the C Block should not change the PLC global memory.

3. Use re-entrant versions of functions.

3.6.17 Restricting Compilation to a Specific Target
In most cases, you will want to the use the PACRXPlc.h header file and the corresponding command
line

compileCPACRx

to compile a C Block for any PACSystems RX PLC. If you want to compile your application for a
specific target (such as the RX7i or RX3i), you can use the command line

compileCPACRx7i

or

compileCPACRx3i

respectively while still using the PACRXPlc.h header file.

However, if you always want to restrict compilation for a specific target on a particular C Block, you
should use the PACRX7iPlc.h for the RX7i target or PACRX3iPlc.h for the RX3i target. By using these
header files, the C Block will successfully compile only for the specified target. For example, if you
use the “PACRX7iPlc.h” header file in your C Block source file, you must use the

compileCPACRX7i

command line to successfully compile the C Block. In this case if you attempt to use the

compileCPACRX3i

command line, the compilation will fail.

Note: As of Release 3.5, C Block functionality between Rx3i and Rx7i targets is essentially the same so that

compilation for specific targets is currently not needed. However, the PACSystems C Toolkit is

structured to support variation between targets in case it is needed in the future.

Note: compileCPACRX7i and compileCPACRX3i are compatible with 32-bit C Blocks only; compileCPACRx is

the only command compatible with 64-bit C Blocks.

GFK-2259F October 2017 169

Chapter 4 Debugging and Testing C Applications

4.1 Testing C Applications in the PC Environment

It is highly recommended that all C applications be tested prior to execution on the PACSystems CPU. This is

best accomplished by testing the application on the PC using the PC debugging environment provided by the

C Toolkit. This environment provides various batch files that use the Cygwin compiler, linker and debugger to

produce an *.exe file that can be directly executed on the PC. The first step is to develop the C Block source

code using the editor of your choice. The C Toolkit provides a set of stub functions for each of the C Toolkit PLC

functions that are compiled and linked to your C Block during the PC compilation process. These stub

functions are located in the “Targets\CommonFiles\TargetStubLibCommon” subdirectory. You can modify

these stub functions to simulate dynamic behavior.

When debugging on the PC, the C Run-Time library functions of the Cygwin environment are used. However,

some non-standard C library functions, such as re-entrant forms of functions such as div_r() for div(), must be

used on the PLC. These functions are provided by the C Toolkit and compiled and linked with your C Block

during the PC compilation process. After compiling and linking the C block, you can then run the application

using the Cygwin environment to simulate and debug the application.

Chapter 4. Debugging and Testing C Applications

170 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

The following steps describe how to debug an application on the PC:

1. Create C Test driver code that initializes memory pointers and calls the C Block to be tested. An example is

given below:

/* C PC Driver code - ctkPcDriver.c */

#include “PACRXPlc.h” /* For any PACSystems PLC */

/* For RX3i use PACRX3iPLC.h For Rx7i use PACRx7iPLC.h */

#include "ctkInitCBlock.h"

/* declare GefMain as external function in another file*/

extern int GefMain(T_WORD *pR8, T_BYTE *pI1000, T_BYTE *pM500);

int main(int argc, char *argv[])

{

 initCBlock(); /* creates ref mem and initializes pointers to that

 memory*/

 GefMain(&RW(8), &Ib(1000), &Mb(500)); /* calling main passing

 pointers to %R8, %I1000 and

 %M500 */

 return 0;

}

To avoid having to remove or bypass this code when compiling for the PLC, it is recommended that this code

reside in another C source file and then compiled with the C Block under test.

2. Create your C Block application. An example is shown below:

/* myCBlock.c */

#include <stdio.h>

#include <PACRXPlc.h>

T_INT32 status;

T_INT32 failCount = 0;

int GefMain(T_WORD *pR8, T_BYTE *pI1000, T_BYTE *pM500)

{

 if (*pR8 != 0)

 {

 RW(10) = * pR8; /*write %R8 to %R10 as word */

 RD(12) = failCount;

 return GEF_EXECUTION_OK;

 }

 else

 {

 *pM500 = *pI1000; /* Copy %I1000 (one byte) to %M500) */

 status = GEF_EXECUTION_ERROR;

 failCount++;

 return status;

 }

}

3. Optionally add code to the PLC C stub functions to simulate the desired PLC behavior.

Note: PLC C stub function files are located in the following directory:

<yourInstallDir>\PACSystemsCToolkit\Targets\CommonFiles\TargetStubLibCommon

Chapter 4. Debugging and Testing C Applications

GFK-2259F October 2017 171

4. Create sourcesDebug file that specifies which files to compile together: An example is given below:

Note: Comments can be included by putting a "#" in the first column.

sourcesDebug file

CFILENAMES = myCBlock.c ctkPcDriver.c

5. Start the C Toolkit. (Double click the desktop icon (PACSystems(TM) C Toolkit) or use the Start menu to

execute the file ctkPACS.bat located at the Toolkit's root directory.)

6. Within the DOS window created in step 4, compile the C Block for the PC using the following command in

the same directory containing the source files and the sourcesDebug file:

CompileCDebugPACRX

(For Rx7i targets, use CompileCDebugPACRX7i; for RX3i targets, use

CompileCDebugPACRX3i)

7. Run the Cygwin debugger using the following command:

debugPACRX pc\myCBlock.exe

(For Rx7i targets, use DebugPACRX7i; for RX3i targets, use DebugPACRX3i)

This will bring up a Windows based debugger that allows setting break points, single step, viewing and

changing memory, etc. Use the help facility within this application for information on how to use the

debugger.

Caution

The Toolkit places copies of the PLCC stub file source code into the “\pc”
directory to allow source line debugging. You should not modify these files
because they will be replaced with the master stub files located in
“Targets\CommonFiles\TargetStubLibCommon” each time your source files
are recompiled.

8. The C Block can also be run at the DOS prompt with the following command:

runPACRX pc\myCBlock.exe

(For Rx7i targets, use runPACRX7i pc\myCBlock.exe; for Rx3i targets, use

runPACRX3i pc\myCBlock.exe)

Debugging in this case requires PLCC_MessageWrite() statements within the application to indicate program

flow and state.

Chapter 4. Debugging and Testing C Applications

172 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

4.2 Debugging C Applications in the PLC

There are two primary ways to debug the C application operating in the PLC: message mode writes to serial

port and reference table monitoring.

4.2.1 Message Mode Debugging

The use of PLCC_MessageWrite to debug a C application running in a PACSystems is very similar to using

PLCC_MessageWrite to debug the same C application on the PC. The PLCC_MessageWrite statements

should be placed in the source code to provide a road map of the execution path and to display the value of

any key data items.

Note: For PLCC_MessageWrite to work, the CPU’s serial port must be configured for Message mode. If the

CPU’s serial port is not configured for Message mode and PLCC_MessageWrite is called, no

characters are placed into the print queue and the return value from PLCC_MessageWrite is -1.

4.2.2 Reference Table Monitoring

As with PLCC_MessageWrite debugging, the execution path and key data items may be determined by

modifying a C application to place this information into unused areas of the global PLC reference tables (%R,

%W, %M, %T, %P, etc.) and then viewing the saved execution road map and key data items through the

programmer’s online reference display(s).

GFK-2259F October 2017 173

Chapter 5 Conversion Notes and Series 90 Compatibility

For the most part, C Block programming with the PACSystems is very similar to the Series 90-70 and
Series 90-30 PLCs. This chapter describes differences that must be considered when converting
Series 90-70 or Series 90-30 applications to PACSystems. C blocks in existing Series 90 program
folders must be recompiled using the PACSystems C Toolkit.

5.1 Series 90 Compatibility Header Files (PLCC9070.h and
PLCC9030.h)

To minimize conversion issues when converting Series 90 applications, use the appropriate include
file in your C Block application:

Series 90-70 Use PLCC9070.h instead of PACRXPLC.h or PACRX7iPlc.h.

Series 90-30

Use PLCC9030.h instead of PACRXPLC.h or PACRX3iPlc.h.

If a C block is used as the _MAIN block in a 90-30 folder, you must compile the C source into a
program block and create a one-rung main program in LD that calls this block.

PLCC9070.h

This file equates some of the 90-70 C Toolkit names to the equivalent PACSystems C Toolkit names.
For example, in the 90-70 C Toolkit many run-time functions have a “far” version such as _fstrcat.
Since the PACSystems does not require the far version of functions, the PLCC9070.h file equates
them to the non-far function such as strcat for _fstrcat. Similarly, the 90-70 C Toolkit used OK and
ERROR as defines for the return value that controls the state of ENO. These are equated to
GEF_EXECUTION_OK and GEF_EXECUTION_ERROR respectively. Also, this file equates some of the
common basic types such as byte and word to the equivalent PACSystems types, T_BYTE and
T_WORD.

PLCC9030.h

This file equates some of the 90-30 C Toolkit names to the equivalent PACSystems C Toolkit names. Similar to

the 90-70 version, the PLC9030.h file equates far versions of functions to non-far versions. This file also

equates common basic types such as byte and word to the equivalent PACSystems types, T_BYTE and

T_WORD.

For new applications, one of the following target header files should be used:

PACRXPLC.h Compiles C Blocks that work with all PACSystems CPU targets.

PACRX3iPLC.h Compiles C Blocks that work with PACSystems RX3i target.

PACRX7iPLC.h Compiles C Blocks that work with PACSystems RX7i target.

Chapter 5. Conversion Notes and Series 90 Compatibility

174 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

5.2 Writing Directly to Discrete Memory

If the application uses the Series 90 style macros that write directly to discrete reference memory
(%I, %Q etc.), overrides will not be respected and the corresponding transition bit will not be set
because this functionality is not implemented in hardware on the PACSystems product. Since there
is not a one-to-one correspondence in the functionality of the Series 90, and PACSystems discrete
macros, the PACSystems discrete macro definitions are similar to the Series 90 macros, but slightly
different to flag potential overrides and transition issues. For example, the macro that accessed a
byte of %I memory in Series 90 PLCs was called IB(). In the PACSystems C Toolkit, it is called Ib(). If
you want to overrides to be respected and to set the corresponding transition bit, you must use a
set of new read/write PLC functions. Here are some compatibility/conversion examples:

a) Direct assignment to discrete reference. Here is an example of Series 90 C code:

IB(1) = 0x33;

Here is how the code must be written for the PACSystems to have the same functionality as
the Series 90:

WritePlcByte(I_MEM, 1, 0x33,FALSE);

The first parameter of the WritePlcByte function determines which reference table to access.
The second parameter of determines the reference address to access. The third parameter
determines the value to write to the reference table. The fourth parameter determines if the
byte is written to the most or least significant byte if using a word reference. Since the write
occurs to a discrete reference the parameter is unused. If the “RefTable” or “address” are out
of range, no reference memory values are changed and the function returns GEF_ERROR. If
the “RefTable” and “address” are within range, the function returns GEF_OK. The prototype
for this function is shown below:

T_INT32 WritePlcByte(T_WORD RefTable, T_DWORD address,

 T_BYTE writeValue, T_BOOLEAN msbByte);

b) Reading a discrete reference. Here is an example of Series 90 C code:

MyVar1 = IB(1);

Because this is a read operation that does not need to take into account override and
transition bits, you have the choice of using a macro or a function call to get the same
functionality as the Series 90 PLC.

Macro:

MyVar1 = Ib(1);

Function Call:

MyVar1 = ReadPlcByte(I_MEM, 1, FALSE);

Chapter 5. Conversion Notes and Series 90 Compatibility

GFK-2259F October 2017 175

c) Using test bit, bit set or bit clear functions. In this case, there is no coding change from
Series 90 to the PACSystems because a function is implemented using the same syntax as
the macro. The function carries out the proper behavior with respect to overrides and
transition bits. From a reuse standpoint, the macro call looks exactly the same as the
function call so there is no coding change required. For example, the following 90-70 C code
does not need to change:

if (BIT_TST_I(1))

{

 BIT_SET_I(2);

}

else

{

 BIT_CLR_I(2);

}

d) Other Macros. Most other macros can be used just as they were used in the Series 90 PLC
and require no conversion. A complete list of all macros and their compatibility with the
90-70 and 90-30 macros is located in Appendix A.

Chapter 5. Conversion Notes and Series 90 Compatibility

176 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

5.3 PLC Target Library Function Compatibility Issues

Most 90-70 and 90-30 Target Library functions are supported but there are some compatibility
issues. A complete list of all PACSystems Target Library functions and compatibility issues are
described in Appendix A.

5.4 Compatibility Issues with Retentive Global Variables

In the Series 90, C Block’s retentive global variables are uninitialized and denoted with the “static”
attribute. All other global variables are non-retentive. Although not documented in the Series 90,
uninitialized non-retentive global variables were set to 0 on a run to stop transition. For the
PACSystems C Blocks, both static and non-static uninitialized global variables are retentive and are
truly uninitialized (not set to 0). Users who relied on uninitialized non-static variables being set to 0
on a stop to run transition will need to add initialization code. PACSystems C Blocks with initialized
variables are non-retentive which is the same behavior as the Series 90.

5.5 “int” Type Issues

The “int” basic type in the 90-70 and 90-30 represents a 16-bit signed number. However,
PACSystems is a 32-bit system so the “int” basic type is a 32-bit signed number. You will need to
evaluate your programs to determine if this conversion causes any issues. Here are some examples:

int myVar;

myVar = RI(1); /* sets myVar to equal %R1 as a 16-bit signed value */

When this is compiled and executed on a PACSystems PLC, the least significant 16 bits will be set
equal to %R1. The most significant 16 bits will be set to 0 unless the number is negative in which
case the most significant 16 bits will be set to 0xffff (sign extended). This case should not typically
cause any problems because the cast is from a smaller to a higher number of bits.

However, the reverse case may cause problems in some cases.

int myVar;

RI(1) = myVar; /* sets %R1 with a 32-bit signed value */

In this case, the least significant 16 bits of myVar will be written to %R1. Thus, if the value of myVar
is outside the range of a signed 16-bit number (+32767 to -32768), then the value in %R1 will be a
signed 16-bit truncated version of myVar. For example, if myVar is 32768 (0x00008000), the value in
%R1 will be -32768 (0x8000).

5.6 “enum” Type Issues

The “enum” basic type in the 90-70 and 90-30 represents a 16-bit signed number. However,
PACSystems is a 32-bit system so the “enum” basic type is a 32-bit signed number. You will need to
evaluate your programs to determine if this conversion causes any issues.

5.7 Non-Standard C Library Functions

Non-Standard C Library functions are not supported in the PACSystems C Toolkit. See appendix B for
functions that are not supported.

5.8 Entry Point

In the Series 90 C Toolkit, the entry point into the user application was main(). For the PACSystems C
Toolkit, the entry point is GefMain().

Chapter 5. Conversion Notes and Series 90 Compatibility

GFK-2259F October 2017 177

5.9 C Standalone Programs

C standalone programs are not supported. However, C program applications that do not rely on the
C program scheduling features can be compiled and executed as C blocks.

5.10 Use of Input Parameters as Pointers to Discrete Memory
Tables

In the PACSystems C Toolkit if the user application is passed a pointer to one of the discrete memory
tables (%I, %Q etc.), for example as one of the input parameters to GefMain(),and the pointer is used
to write to discrete reference table memory, overrides and transitions are not taken into account for
the write operation. When a discrete memory write operation occurs via a pointer in the Series 90
PLCs, overrides and transitions are taken into account.

For the PACSystems C Toolkit, you should use the following function when writing directly to discrete
memory via a pointer if you want overrides and transition bits to be respected:

T_INT32 PlcMemCopy(void *pDestination, void *pSource, T_DWORD size);

GFK-2259F October 2017 179

Chapter 6 Installed Sample Blocks

In the C Toolkit directory structure, there are two subdirectories under the Projects directory that
contain examples of blocks, SampleProj1 and SampleProj2.

6.1 SampleProj1

The SampleProj1 directory contains three sample C files that generate a C Block from a single C
source file. Each file is discussed below:

• ctkCBlockTest.c is intended for compilation for the RX7i, RX3i, or PACRX and makes a call to every
function and macro supported by the C Toolkit. This block is an example of an application without
input/output parameters.

Because ctkCBlockTest exercises all available toolkit routines and macros, it will not execute on a
PACSystems CPU with the default configuration. See the setup note at the top of the C file for more
information.

• ctkCBlockTestParams_7_7.c provides a simple example using seven input and seven output
parameters. The application equates the output to the inputs, simulating a simple move type of
operation. In addition, it provides an example of controlling ENO by returning GEF_EXECUTION_ERROR
(ENO off) if input 1 (pCoolantTemp is greater than 1000) or GEF_EXECUTION_OK (ENO on) otherwise.

To execute this sample block on a PACSystems CPU, the C block must be setup as a parameterized
block with 7 WORD inputs and 7 WORD outputs.

• ctkCBlockTestPc.c is a version similar to ctkCBlockTest.C with additional driver code at the end of the
file so that it can be compiled and run on the PC.

Chapter 6. Installed Sample Blocks

180 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

6.2 SampleProj2

The SampleProj2 directory contains an example for compiling multiple C sources into a single C
Block. The files to be compiled and linked together for the PLC execution are specified in the
“sources“ file. Similarly, the files to be compiled and linked together for PC debugging are specified in
the sourcesDebug file. This directory also has examples of precompiled object files.

1) ctkCBlockTest4.plc0, ctkCBlockTest5.plc0, and ctkCBlockTest.plc0 for PLC linking.
2) ctkCBlockTest4.pc0, ctkCBlockTest5.pc0, ctkCBlockTest.pc0 for PC linking.

These files were produced by compiling their corresponding C source file with the following
command for the PLC object files:

compileCPACRX7i ctkCBlockTest4 DisableGefLibLink

And the following command for the PC object files:

compileCDebugPACRX7i ctkCBlockTest4 DisableGefLibLink

The “sources” and “sourcesDebug” files respectively specify the use of these object files for
compilation as opposed to the source file.

All files are compiled and linked together with one of the following commands for the PLC:

compileCPACRX7i

compileCPACRX3i

compileCPACRX

And one of the following commands for the PC:

compileCDebugPACRX7i

compileCDebugPACRX3i

compileCDebugPACRX

These files also illustrate the use of the serial port message mode read/write functions.

This sample block will not execute on a PACSystems CPU with the default configuration. See the
setup note at the top of ctkCBlockTest1.c for more information.

GFK-2259F October 2017 181

Appendix A Target Library Functions

As a general note, the following functions will set errno in the current context, if the function does
not return status in some form. errno contains an error code from the last Target Library or C Run
Time Library function which encountered an error. You can access errno via the function
PLCC_GetErrno().

A-1 Target Library Reference Memory Functions and Macros

Implemented in ctkRefMem.h

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

BIT_TST_I(address); Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_I(T_DWORD address); Same functionality as 90-70 and 90-30, but implemented as a function rather
than a macro to respect overrides and to change corresponding transition
bits. This function also returns an GEF_OK status if the address is within range
and an GEF_ERROR status if the address is not within range. In the
GEF_ERROR case, the bit is not changed.

Errnos:
TLIB_ERRNO_OFFSET_RANGE_ER (Address is outside of valid range).

T_INT32 BIT_CLR_I(T_DWORD address);

BIT_TST_Q(address); Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_Q(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status as BIT_SET_I().

T_INT32 BIT_CLR_Q(T_DWORD address)

BIT_TST_M(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_M(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status as BIT_SET_I().

T_INT32 BIT_CLR_M(T_DWORD address)

BIT_TST_T(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_T(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status as BIT_SET_I().

T_INT32 BIT_CLR_T(T_DWORD address)

BIT_TST_G(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_G(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status as BIT_SET_I().

T_INT32 BIT_CLR_G(T_DWORD address)

 BIT_TST_GA(x) not supported (90-70 only)

 BIT_SET_GA(x) not supported (90-70 only)

 BIT_CLR_GA(x) not supported (90-70 only)

 BIT_TST_GB(x) not supported (90-70 only)

 BIT_SET_GB(x) not supported (90-70 only)

 BIT_CLR_GB(x) not supported (90-70 only)

 BIT_TST_GC(x) not supported (90-70 only)

 BIT_SET_GC(x) not supported (90-70 only)

Appendix A. Target Library Functions

182 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

 BIT_CLR_GC(x) not supported (90-70 only)

 BIT_TST_GD(x) not supported (90-70 only)

 BIT_SET_GD(x) not supported (90-70 only)

 BIT_CLR_GD(x) not supported (90-70 only)

 BIT_TST_GE(x) not supported (90-70 only)

 BIT_SET_GE(x) not supported (90-70 only)

 BIT_CLR_GE(x) not supported (90-70 only)

BIT_TST_SA(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_SA(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status as BIT_SET_I().

T_INT32 BIT_CLR_SA(T_DWORD address)

BIT_TST_SB(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_SB(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status as BIT_SET_I().

T_INT32 BIT_CLR_SB(T_DWORD address)

BIT_TST_SC(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_SC(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status as BIT_SET_I().

T_INT32 BIT_CLR_SC(T_DWORD address)

BIT_TST_R(address, bitPosition) Macros compatible with 90-70 and 90-30.

BIT_SET_R(address, bitPosition)

BIT_CLR_R(address, bitPosition)

BIT_TST_AI(address, bitPosition)

BIT_SET_AI(address, bitPosition)

BIT_CLR_AI(address, bitPosition)

BIT_TST_AQ(address, bitPosition)

BIT_SET_AQ(address, bitPosition)

BIT_CLR_AQ(address, bitPosition)

BIT_TST_P(address, bitPosition) Macros compatible with 90-70.

BIT_SET_P(address, bitPosition)

BIT_CLR_P(address, bitPosition)

BIT_TST_L(address, bitPosition)

BIT_SET_L(address, bitPosition)

BIT_CLR_L(address, bitPosition)

BIT_TST_S(address) Macros compatible with 90-70 and 90-30.

BIT_TST_W(address, bitPosition) New Macros to access %W memory. Not compatible with Series 90.

BIT_SET_W(address, bitPosition)

BIT_CLR_W(address, bitPosition)

Appendix A. Target Library Functions

GFK-2259F October 2017 183

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

T_INT32 setBit
(T_WORD RefTable,
T_DWORD offset,
T_WORD bitNumber)

New function to generically set a bit reference memory. The bitNumber is only
used for word type memory. The function returns GEF_OK if the bit is set and
GEF_ERROR if the bit cannot be set.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER
(offset is outside of valid range).

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_INT32 clearBit
(T_WORD RefTable,
T_DWORD offset,
T_WORD bitNumber)

New function to generically clear a bit in reference memory. The bitNumber is
only used for word type memory. The function returns GEF_OK if the bit is set
and GEF_ERROR if the bit cannot be set.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER (offset is outside of valid range).

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Ib(address) Implemented as macro compatible with 90-70 and 90-30 syntax, with the
exception that the name has been changed from IB to Ib. However, this
macro does not respect overrides and does not set corresponding transition
bits so the functionality is different than the 90-70 and 90-30. You should use
the WritePlcByte() function to get the same functionality as the 90-70 and
90-30. (See next item.)

T_INT32 WritePlcByte
(T_WORD RefTable,
T_DWORD offset,
T_BYTE writeValue,
T_BOOLEAN msbByte)

This function writes to reference memory taking into account overrides and
transition bits. The reference memory in the specified Reference Table
(RefTable) and at the specified “offset” is written using the value of
“writeValue”. If the “offset” is out of range, no reference memory values are
changed and the function returns GEF_ERROR. If the offset is within range,
the function returns GEF_OK. msbByte determines whether the MSB or LSB of
a word type reference is written.

Note: this function will only affect the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_BYTE ReadPlcByte
(T_WORD RefTable,
T_DWORD offset,
T_BOOLEAN msbByte)

The reference memory in the specified Reference Table (RefTable) and at the
specified “offset” is read and returned by the function. Errno is set if there is
an error reading the value. msbByte determines whether the MSB or LSB of a
word type reference is read.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Qb(address) Similar issues as Ib()

Mb(address) Similar issues as Ib()

Tb(address) Similar issues as Ib()

Appendix A. Target Library Functions

184 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

Gb(address) Similar issues as Ib()

 GAB(x) not supported.

 GBB(x) not supported

 GCB(x) not supported

 GDB(x) not supported

 GEB(x) not supported

Sb(address) Similar issues as Ib(); This is read-only and the compiler will issue an error if
you attempt to write to this memory using this macro.

SAb(address) Similar issues as Ib()

SBb(address) Similar issues as Ib()

SCb(address) Similar issues as Ib()

RB(address, highByte) Macros compatible with 90-70 and 90-30.

AIB(address, highByte)

AQB(address, highByte)

PB(address, highByte) Macros compatible with 90-70.

LB(address, highByte)

WB(address, highByte) New Macro to support %W memory. Not supported by Series 90.

Iw(address) Implemented as macro compatible with 90-70 and 90-30 syntax with the
exception that the name has been changed from IW to Iw. However, this
macro does not respect overrides and does not set corresponding transition
bits so the functionality is different than the 90-70 and 90-30. You should use
the WritePlcWord() function to get the same functionality as the 90-70 and
90-30.(see next item).

T_INT32 WritePlcWord
(T_WORD RefTable,
T_DWORD offset,
T_WORD writeValue)

This function writes to reference memory taking into account overrides and
transition bits. A word (16 unsigned bits) of reference memory in the specified
Reference Table (RefTable) and at the specified “offset” is written with the
“writeValue”. If the “offset” is out of range, no reference memory values are
changed and the function returns GEF_ERROR. If the “offset” is within range,
the function returns GEF_OK.

Note: this function will only affect the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_WORD ReadPlcWord
(T_WORD RefTable,
T_DWORD offset)

A word (16 unsigned bits) of reference memory in the specified Reference
Table (RefTable) and at the specified “offset” is read and returned by the
function. Errno is set if there is an error reading the value.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Appendix A. Target Library Functions

GFK-2259F October 2017 185

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

Qw(address) Similar issues as Ib()

Mw(address)

Tw(address)

Gw(address)

 GAW(x) not supported.

 GBW(x) not supported.

 GCW(x) not supported.

 GDW(x) not supported.

 GEW(x) not supported.

Sw(address) Similar issues as Ib(). This is read-only and the compiler will issue an error if
you attempt to write to this memory using this macro.

SAw(address) Similar issues as Ib()

SBW(address) Similar issues as Ib()

SCw(address) Similar issues as Ib()

RW(address) Macro Compatible with 90-70 and 90-30.

AIW(address)

AQW(address)

PW(address) Macro Compatible with 90-70.

LW(address)

WW(address) New Macro to support %W memory. Not supported by Series 90.

Ii(address) Implemented as macro compatible with 90-70 and 90-30 syntax with the
exception that the name has been changed from II to Ii. However, this macro
does not respect overrides and does not set corresponding transition bits so
the functionality is different than the 90-70 and 90-30. You should use the
WritePlcInt() function to get the same functionality as the 90-70 and 90-30.
(see next item).

T_INT32 WritePlcInt
(T_WORD RefTable,
T_DWORD offset,
T_INT16 writeValue)

This function writes to reference memory taking into account overrides and
transition bits. Reference memory in the specified Reference Table (RefTable)
and at the specified “offset” is written with the “writeValue” as a 16-bit signed
integer. If the “offset” is out of range, no reference memory values are
changed and the function returns GEF_ERROR. If the offset is within range, the
function returns GEF_OK.

Note: this function will only affect the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Appendix A. Target Library Functions

186 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

T_INT16 ReadPlcInt
(T_WORD RefTable,
T_DWORD offset)

Reference memory in the specified Reference Table (RefTable) and at the
specified “offset” is read as a 16-bit signed integer and returned by the
function. Errno is set if there is an error reading the value.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Qi(address) Similar issues as Ib().

Mi(address)

Ti(address)

Gi(address)

 GAI(x) not supported

 GBI(x) not supported

 GCI(x) not supported

 GDI(x) not supported

 GEI(x) not supported

Si(address) Similar issues as Ib(). This is read-only and the compiler will issue an error if
you attempt to write to this memory using this macro.

SAi(address) Similar issues as Ib().

SBi(address)

SCi(address)

RI(address) Macros Compatible with 90-70 and 90-30.

AII(address)

AQI(address)

PI(address) Macros Compatible with 90-70.

LI(address)

WI(address) New Macro to support %W memory

Id(address) Implemented as macro compatible with 90-70 and 90-30 syntax with the
exception that the name has been changed from ID to Id. However, this
macro does not respect overrides and does not set corresponding transition
bits so the functionality is different than the 90-70 and 90-30. You should use
the WritePlcDword() function to get the same functionality as the 90-70 and
90-30. (see next item).

Appendix A. Target Library Functions

GFK-2259F October 2017 187

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

T_INT32 WritePlcDint
(T_WORD RefTable,
T_DWORD offset,
T_DWORD writeValue)

This function writes to reference memory taking into account overrides and
transition bits. Reference memory in the specified Reference Table (RefTable)
and at the specified “offset” is written with the “writeValue” as a 32-bit signed
integer. If the “offset” is out of range, no reference memory values are
changed and the function returns GEF_ERROR. If the offset is within range,
the function returns GEF_OK.

Note: this function will only affect the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_INT32 ReadPlcDint
(T_WORD RefTable,
T_DWORD offset)

Reference memory in the specified Reference Table (RefTable) and at the
specified “offset” is read as a 32-bit signed integer and returned by the
function. Errno is set if there is an error reading the value.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Qd(address) Similar issues as Ib()

Md(address)

Td(address)

Gd(address)

 GAD(x) not supported

 GBD(x) not supported

 GCD(x) not supported

 GDD(x) not supported

 GED(x) not supported

Sd(address) Similar issues as Ib(). This is read-only and the compiler will issue an error if
you attempt to write to this memory using this macro.

SAd(address) Similar issues as Ib().

SBd(address)

SCd(address)

RD(address) Macros compatible with the 90-70 and 90-30.

AID(address)

AQD(address)

PD(address) Macros compatible with the 90-70.

LD(address)

WD(address) New Macro to support %W memory

RF(address) Macros compatible with the 90-70 and 90-30.

AIF(address)

AQF(address)

Appendix A. Target Library Functions

188 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

PF(address) Macros compatible with the 90-70.

LF(address)

WF(address) New Macro to support %W memory

AIDbl(address)

AQDbl(address)

LDbl(address)

PDbl(address)

RDbl(address)

WDbl(address)

T_INT32 WritePlcDouble

(T_WORD RefTable,

T_DWORD offset,

T_REAL64 writeValue);

This function writes to reference memory taking into account overrides and
transition bits. Reference memory in the specified Reference Table (RefTable)
and at the specified “offset” is written with the “writeValue” as a 64-bit floating
point value. If the “RefTable” or “offset” are out of range, no reference
memory values are changed and the function returns GEF_ERROR. If the
“offset” is within range, the function returns GEF_OK.

Note: this function will affect only the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER
TLIB_ERRNO_READ_ONLY_ER
TLIB_ERRNO_INVALID_REF_TABLE_ER

T_REAL64 ReadPlcDouble

(T_WORD RefTable,

T_DWORD offset);

Reference memory in the specified Reference Table (RefTable) and at the
specified offset is read as a 64-bit floating point value and returned by the
function. Errno is set if there is an error reading the value.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_INT32 PlcMemCopy
(void *pDestination,
void *pSource,
T_DWORD size)

This function writes to reference memory taking into account overrides and
transition bits. The function writes data pointed to by pDestination based on
the memory pointed to by pSource. The length of data written is determined
by the “size” parameter which is in units of bytes (8 bits).

Errnos:

TLIB_ERRNO_INVALID_SOURCE_POINTER (Considers pointer

and size)

TLIB_ERRNO_INVALID_DEST_POINTER (Considers pointer and

size)

TLIB_ERRNO_READ_ONLY_ER

BIT_TST_I_TRANS(address) Macros compatible with the 90-70 and 90-30.

BIT_TST_Q_TRANS(address)

BIT_TST_M_TRANS(address)

BIT_TST_T_TRANS(address)

BIT_TST_G_TRANS(address)

 BIT_TST_GA_TRANS(address) not supported

 BIT_TST_GB_TRANS(address) not supported

Appendix A. Target Library Functions

GFK-2259F October 2017 189

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

 BIT_TST_GC_TRANS(address) not supported

 BIT_TST_GD_TRANS(address) not supported

 BIT_TST_GE_TRANS(address) not supported

BIT_TST_S_TRANS(address) Macros compatible with 90-70 and 90-30.

BIT_TST_SA_TRANS(address)

BIT_TST_SB_TRANS(address)

BIT_TST_SC_TRANS(address)

IB_TRANS(address) Macros compatible with 90-70 and 90-30. This is read-only and the compiler
will issue an error if you attempt to write to this memory using this macro.

QB_TRANS(address)

MB_TRANS(address)

TB_TRANS(address)

GB_TRANS(address)

 GAB_TRANS(x) not supported

 GBB_TRANS(x) not supported

 GCB_TRANS(x) not supported

 GDB_TRANS(x) not supported

 GEB_TRANS(x) not supported

SB_TRANS(address) Macros compatible with 90-70 and 90-30. This is read-only and the compiler
will issue an error if you attempt to write to this memory using this macro.

SAB_TRANS(address)

SBB_TRANS(address)

SCB_TRANS(address)

BIT_TST_I_DIAG(address) Macros compatible with 90-70. This is read-only and the compiler will issue an
error if you attempt to write to this memory using this macro.

BIT_TST_Q_DIAG(address)

IB_DIAG(address)

QB_DIAG(address)

AIB_DIAG(address)

AQB_DIAG(address)

AI_HIALRM(address) Macros compatible with 90-70.

AI_LOALRM(address)

AIB_FAULT(address) Macro compatible with 90-70.

AIB_FAULT is non-zero for conditions that set a fault contact or generate a
fault entry in the I/O fault table, such as Overrrange and Underrange.

AQB_FAULT(address) Macros compatible with 90-70.

AI_OVERRANGE(address)

AI_UNDERRANGE(address)

AQ_OVERRANGE(address) Macro not supported by 90-70.

Appendix A. Target Library Functions

190 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

AQ_UNDERRANGE(address) Macro not supported by 90-70.

T_DWORD refMemSize

(T_WORD RefTable)

New generic memory size function. The function returns the memory size
based on the RefTable segment selector.

Errnos:

TLIB_ERRNO_INVALID_REF_TABLE_ER

Appendix A. Target Library Functions

GFK-2259F October 2017 191

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

L_SIZE Compatible with the 90-70 but is implemented as a function; for example:

#define L_SIZE refMemSize(L_MEM)
P_SIZE

R_SIZE Compatible with the 90-70 and 90-30. Implemented as a function.

AI_SIZE

AQ_SIZE

I_SIZE

Q_SIZE

T_SIZE

M_SIZE

G_SIZE

 GA_SIZE not supported

 GB_SIZE not supported

 GC_SIZE not supported

 GD_SIZE not supported

 GE_SIZE not supported

SA_SIZE Compatible with the 90-70 and 90-30 but implemented as a function; for
example:

#define SA_SIZE refMemSize(SA_MEM)
SB_SIZE

SC_SIZE

S_SIZE

W_SIZE New Macro to support %W memory. Not supported by Series 90.

I_DIAGS_SIZE Compatible with the 90-70 but implemented as a function; for example:

#define I_DIAGS_SIZE refMemSize(I_DIAG_MEM)
Q_DIAGS_SIZE

AI_DIAGS_SIZE

AQ_DIAGS_SIZE

RACKX(r) Compatible with the 90-70 but implemented as a function call to the function
rackX.()

Errnos:

TLIB_ERRNO_INVALID_RACK

SLOTX(r,s) Compatible with the 90-70 but implemented as a function call to slotX();

Errnos:

TLIB_ERRNO_INVALID_RACK

TLIB_ERRNO_INVALID_SLOT

BLOCKX(r,s,b,sba) Compatible with the 90-70 but implemented as a function call to blockX();

Errnos:

REF_ERRNO_INPUT_OUT_OF_RANGE

Appendix A. Target Library Functions

192 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

RSMB(x) Compatible with the 90-70 but implemented as a function call to rsmb();

Errnos:

TLIB_ERRNO_INVALID_RACK

FST_SCN Macro compatible with 90-70.

LST_SCN Macro to provide access to the %S00002 (system last scan indication) bit.
Compatible with Series 90-30.

T_10MS Macros compatible with 90-70 and 90-30.

T_100MS

T_SEC

T_MIN

ALW_ON

ALW_OFF

SY_FULL

IO_FULL

FST_EXE Macro compatible with the 90-70.

Note: FST_EXE value is inherited from the calling block.

Appendix A. Target Library Functions

GFK-2259F October 2017 193

A-2 Target Library Fault Table Functions, Structures and
Constants

Implemented in ctkPlcFault.h

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

Fault Table Functions

T_INT32 PLCC_read_fault_tables(struct

read_fault_tables_rec *x);

/* This service request will read the entire PLC or I/O fault
table.*/

#define PLC_FAULT_TABLE 0

#define IO_FAULT_TABLE 1

#define NUM_LEGACY_PLC_FAULT_ENTRIES 16

#define NUM_LEGACY_IO_FAULT_ENTRIES 32

struct time_stamp_rec{

 T_BYTE second; /* BCD format, seconds in low-order
nibble, tens of seconds in high-order nibble. */

 T_BYTE minute; /* BCD format, same as for seconds. */

 T_BYTE hour; /* BCD format, same as for seconds. */

 T_BYTE day; /* BCD format, same as for seconds. */

 T_BYTE month; /* BCD format, same as for seconds. */

 T_BYTE year; /* BCD format, same as for seconds. */

};

struct PLC_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_WORD task;

};

struct IO_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_BYTE IO_bus;

 T_BYTE block;

 T_WORD point;

};

struct reference_address_rec{

 T_BYTE memory_type;

 T_WORD offset;

};

struct PLC_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct time_stamp_rec time_stamp;

};

Compatible with the Series 90 library, with the exception that the union must be named as

required by the GNU C compiler. Therefore, to get access to a particular fault, the following
syntax must be used:

myFaultRec.faultEntry.PLC_faults[0]…

Appendix A. Target Library Functions

194 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

struct IO_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct time_stamp_rec time_stamp;

};

struct PLC_ext_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct ext_time_stamp_rec time_stamp;

 T_WORD fault_id;

};

struct IO_ext_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct ext_time_stamp_rec time_stamp;

 T_WORD fault_id;

};

struct read_fault_tables_rec {

 T_WORD table; /* PLC_FAULT_TABLE or IO_FAULT_TABLE
*/

 T_WORD zero; /* must be set to zero */

 T_WORD reserved[13];

 struct time_stamp_rec time_since_clear;

 T_WORD num_faults_since_clear;

 T_WORD num_faults_in_queue;

 T_WORD num_faults_read;

 union{

 struct PLC_fault_entry_rec
PLC_faults[NUM_LEGACY_PLC_FAULT_ENTRIES];

 struct IO_fault_entry_rec
IO_faults[NUM_LEGACY_IO_FAULT_ENTRIES];

 } faultEntry;

};

Appendix A. Target Library Functions

GFK-2259F October 2017 195

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_read_last_ext_fault(struct
read_last_ext_fault_rec *x);

/* Read Last-Logged Extended Fault Table Entry . */

struct PLC_ext_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct ext_time_stamp_rec time_stamp;

};

struct IO_ext_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct ext_time_stamp_rec time_stamp;

};

struct read_last_ext_fault_rec {

 T_WORD table; /* PLC_EXT_FAULT_TABLE or
IO_EXT_FAULT_TABLE */

 union {

 struct PLC_ext_fault_entry_rec PLC_entry;

 struct IO_ext_fault_entry_rec IO_entry;

 };

};

#define PLC_EXT_FAULT_TABLE 0x80

#define IO_EXT_FAULT_TABLE 0x81

This function is not described in the Series 90 C Toolkit Users Manual but is included in the
90-70/90-30 C Toolkit header files. This function is included in the PACSystems C Toolkit for
compatibility.

Appendix A. Target Library Functions

196 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_read_last_fault(struct read_last_fault_rec
*x);

/* Read Last-Logged Fault Table Entry. */

struct time_stamp_rec{

 T_BYTE second; /* BCD format, seconds in low-order
nibble, */

 /* tens of seconds in high-order nibble. */

 T_BYTE minute; /* BCD format, same as for seconds. */

 T_BYTE hour; /* BCD format, same as for seconds. */

 T_BYTE day; /* BCD format, same as for seconds. */

 T_BYTE month; /* BCD format, same as for seconds. */

 T_BYTE year; /* BCD format, same as for seconds. */

};

struct PLC_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_WORD task;

};

struct IO_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_BYTE IO_bus;

 T_BYTE block;

 T_WORD point;

};

struct PLC_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct time_stamp_rec time_stamp;

};

struct IO_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct time_stamp_rec time_stamp;

 T_WORD fault_id;

};

struct read_last_fault_rec {

 T_WORD table; /* PLC_FAULT_TABLE or IO_FAULT_TABLE
*/

 union {

 struct PLC_fault_entry_rec PLC_entry;

 struct IO_fault_entry_rec IO_entry;

 };

};

Compatible with 90-70 and 90-30.

Appendix A. Target Library Functions

GFK-2259F October 2017 197

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_clear_fault_tables(struct
clear_fault_tables_rec *x);

/* Clear Fault Tables */

struct clear_fault_tables_rec{

 T_WORD table;

};

#define PLC_FAULT_TABLE 0

#define IO_FAULT_TABLE 1

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_read_ext_fault_tables (struct
read_ext_fault_tables_rec *x);

/* Read Extended Fault Tables */

struct read_ext_fault_tables_rec {

 T_WORD table; /* PLC_EXT_FAULT_TABLE or
IO_EXT_FAULT_TABLE */

 T_WORD start_index;

 T_WORD number_of_entries_to_read;

 T_WORD reserved[12];

 struct time_stamp_rec time_since_clear;

 T_WORD num_faults_since_clear;

 T_WORD num_faults_in_queue;

 T_WORD num_faults_read;

 T_WORD PlcName[16]; union{

 struct PLC_ext_fault_entry_rec PLC_faults[1];

 struct IO_ext_fault_entry_rec IO_faults[1];

 } faultEntry;

};

Example: Extended fault table structure declaration with
user defined number of fault entries:

/* Constants / #defines */
#define MY_PLC_FLT_TBL_SIZE 64
#define MY_IO_FLT_TBL_SIZE 64
/* Structures and typedefs */
/* Note: this structure must be packed */
#pragma pack(1)
struct my_read_ext_fault_tables_rec
{
 T_WORD table; /* PLC_EXT_FAULT_TABLE or
IO_EXT_FAULT_TABLE */
 T_WORD start_index;
 T_WORD number_of_entries_to_read;
 T_WORD reserved[12];
 struct time_stamp_rec time_since_clear;
 T_WORD num_faults_since_clear;
 T_WORD num_faults_in_queue;
 T_WORD num_faults_read;
 T_WORD PlcName[16];
 union
 {
 struct PLC_ext_fault_entry_rec
PLC_faults[MY_PLC_FLT_TBL_SIZE];
 struct IO_ext_fault_entry_rec
IO_faults[MY_IO_FLT_TBL_SIZE];
 } faultEntry;
};
#pragma pack()
/* Variable Declaration and Calling Example */

struct my_read_ext_fault_tables_rec
readExtFaultTablesRec;
PLCC_read_ext_fault_tables(

 (struct
read_ext_fault_tables_rec*)&readExtFaultTablesRec);

This function is not described in the Series 90 C Toolkit Users Manual but is included in the
90-70 C Toolkit header file. This is included in the PACSystems C Toolkit for compatibility. This
function maps to service request 20 in the PACSystems. Since the size of the extended fault
table can be variable Depending on the model of the PACSystems CPU, you will need to create
you own structure with the same members and dimension PLC_faults and IO_faults members
to the size of the maximum number of faults you want to read. You must then declare a
variable of this type and cast it to a read_ext_fault_tables_rec when calling this function (See
Example – Note that the structure must be packed to work properly)

Another issue is that the union must be named as required by the GNU C compiler. Therefore,
to get access to a particular fault, the following syntax must be used:

myExtFaultRec.faultEntry.PLC_faults[0]…

Appendix A. Target Library Functions

198 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

A-3 Target Library General Functions, Structures and Constants

Implemented in ctkPlcFunc.h

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

General PLC Functions

 T_INT32 PLCC_read_elapsed_clock (struct elapsed_clock_rec *);

struct elapsed_clock_rec {

 T_DWORD seconds;

 T_WORD hundred_usecs;

};

Compatible with 90-70 and 90-30 libraries.

 T_INT32 PLCC_read_nano_elapsed_clock (struct nano_elapsed_clock_rec *);

struct nano_elapsed_clock_rec {

 T_DWORD seconds;

 T_DWORD nanoseconds;

};

Function returns elapsed time in nanoseconds.

 T_INT32 PLCC_chars_in_printf_q (void);

/* integer value equal to number of characters currently in the printf buffer */

#define PRINTF_Q_SIZE 2048

Returns GEF_NOT_SUPPORTED since printf is not supported. The
following functions provide information on the number of characters in
the input/output queues:

PLCC_CharsInMessageWriteQ

PLCC_CharsInMessageReadQ

 T_INT32 PLCC_gen_alarm (word, char *);

/* Log a user specified application fault in the PLC fault table.*/

Compatible with the 90-70 and 90-30 libraries.

 T_INT32 PLCC_get_plc_version (struct PLC_ver_info_rec *);

/* Get the PLC family, model, and firmware version and revision.*/

struct PLC_ver_info_rec {

 T_WORD family; /* Host PLC product line */

 T_WORD model; /* Specific Model of PLC */

 T_BYTE sw_ver; /* Major Version of PLC firmware */

 T_BYTE sw_rev; /* Minor Revision of PLC firmware */

};

#define FAMILY_PACSYSTEMS 0x2002

Compatible with 90-70 and 90-30 libraries.

 T_INT32 PLCC_comm_req(struct comm_req_rec *x);

/* Communications Request */

struct status_addr{

 T_WORD seg_selector;

 T_WORD offset;

};

struct comm_req_command_blk_rec{

 T_WORD length;

 T_WORD wait;

 struct status_addr status;

 T_WORD idle_timeout;

 T_WORD max_comm_time;

 T_WORD data[128];

};

struct comm_req_rec{

 struct comm_req_command_blk_rec *command_blk;

 T_BYTE slot;

 T_BYTE rack;

 T_DWORD task_id;

};

Compatible with the 90-70 and 90-30 but not able to access full range of
%W memory. Use PLCC_comm_req_extended() to provide access to the
full %W address range.

Appendix A. Target Library Functions

GFK-2259F October 2017 199

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_comm_req_extended (struct comm_req_rec *x);

/* Communications Request */

struct status_addr_extended{

 T_WORD seg_selector;

 T_DWORD offset;

};

struct comm_req_command_blk_rec{

 T_WORD length;

 T_WORD wait;

 struct status_addr_extended status;

 T_WORD idle_timeout;

 T_WORD max_comm_time;

 T_WORD data[128];

};

struct comm_req_rec_extended{

 struct comm_req_command_blk_rec_extended *command_blk;

 T_BYTE slot;

 T_BYTE rack;

 T_DWORD task_id;

}

Has the same functionality as PLCC_comm._req, except that it can
access the full address range of %W memory. Not supported by
Series 90 PLCs.

 T_INT32 PLCC_do_io(struct do_io_rec *x);

/* Do I/O */

struct do_io_rec{

 T_BYTE start_mem_type;

 T_WORD start_mem_offset;

 T_WORD length;

 T_BYTE alt_mem_type; /* must be set to NULL_SEGSEL if not used */

 T_WORD alt_mem_offset;

};

Compatible with 90-70 and 90-30 libraries.

Errnos:

TLIB_ERRNO_DOIO_INVALID_IO_REF_ER

TLIB_ERRNO_DOIO_INVALID_AUX_REF_ER

 T_INT32 PLCC_do_io_ext(struct do_io_ext_rec *x);

struct do_io_ext_rec{

 T_WORD start_mem_type;

 T_DWORD start_mem_offset;

 T_DWORD length; /* Ignored if start_mem_type is PLC_VAR_MEM */

 T_WORD alt_mem_type; /* must be set to NULL_SEGSEL if not used */

 T_DWORD alt_mem_offset;

};

Not supported by Series 90.

Supported by PACSystems Release 3.5 or greater.

 The Enhanced DO_IO function (Series 90-30 only) is not supported.

 T_INT32 PLCC_sus_io(void);

/* Suspend I/O */

Compatible with the 90-70 and 90-30 library.

T_INT32 PLCC_scan_set_io(struct scan_set_io_rec *pScanSetIoRec);

struct scan_set_io_rec{

 T_BOOLEAN scan_inputs;

 T_BOOLEAN scan_outputs;

 T_UINT16 scan_set_number;

};

Not supported by Series 90.

Supported by PACSystems Release 5.0 or greater.

 T_INT32 PLCC_SNP_ID(T_BYTE request_type, char *id_str_ptr);

/* Read or Write SNP ID */

#define READ_ID 0

#define WRITE_ID 1

Compatible with 90-70 and 90-30 libraries (Release 2.0 and later).

Appendix A. Target Library Functions

200 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_read_override(T_BYTE tbl_typ, T_WORD ref_num, T_WORD len,
T_BYTE *data);

/* Error return values */

#define BAD_MEMORY_TYPE -2

#define OFFSET_NOT_BYTE_ALIGNED –3

#define READING_OUTSIDE_REF_MEM –4

#define BAD_DATA_POINTER -5

/* Read Overrides */

#define I_OVR 0

#define Q_OVR 1

#define M_OVR 2

#define G_OVR 3

The following 90-70 and 90-30 values are not supported by PACSystems:

#define GA_OVR 4

#define GB_OVR 5

#define GC_OVR 6

#define GD_OVR 7

#define GE_OVR 8

 int far PLCCinvokeldblock(void); (not supported)

T_INT32 PLCC_MessageWrite(T_INT32 port, char *buffer, T_INT32 numBytes);

#define PORT1 0
#define PORT2 1

New function to provide serial output.

Note: for all PLCC_Message* functions, the Hardware configuration for
the serial port must be setup for Message Mode for the function to
access the serial port.

Errnos:

TLIB_ERRNO_MSG_INVALID_PORT

TLIB_ERRNO_MSG_NOT_CONFIGURED

TLIB_ERRNO_MSG_INVALID_LENGTH

T_INT32 PLCC_MessageRead(T_INT32 port, char *buffer, T_INT32 numBytes); New function to provide serial input.

Errnos:

TLIB_ERRNO_MSG_INVALID_PORT

TLIB_ERRNO_MSG_NOT_CONFIGURED

TLIB_ERRNO_MSG_INVALID_LENGTH

T_INT32 PLCC_CharsInMessageWriteQ(T_INT32 port); New function that Returns the number of bytes in the write queue.

Errnos:

TLIB_ERRNO_MSG_INVALID_PORT

TLIB_ERRNO_MSG_NOT_CONFIGURED

T_INT32 PLCC_CharsInMessageRead(T_INT32 port, char *buffer, T_INT32

numBytes);
New function that returns the number of bytes in the read queue

Errnos:

TLIB_ERRNO_MSG_INVALID_PORT

TLIB_ERRNO_MSG_NOT_CONFIGURED

Appendix A. Target Library Functions

GFK-2259F October 2017 201

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

Functions based on service requests from the SVCREQ function block

 T_INT32 PLCC_const_sweep_timer(struct const_sweep_timer_rec *x);

/* Change/Read Constant Sweep Timer.*/

struct const_sweep_input_rec {

 T_WORD action;

 T_WORD timer_value;

};

/* structure with return values */

struct const_sweep_output_rec {

 T_WORD sweep_mode;

 T_WORD current_time_value;

};

struct const_sweep_timer_rec {

 union {

 struct const_sweep_input_rec input;

 struct const_sweep_output_rec output;

 };

};

/* action values */

#define DISABLE_CONSTANT_SWEEP_MODE 0

#define ENABLE_CONSTANT_SWEEP_MODE 1

#define CHANGE_TIMER_VALUE 2

#define READ_TIMER_VALUE_AND_STATE 3

/* sweep mode return values */

#define CONSTANT_SWEEP_ENABLED 1

#define CONSTANT_SWEEP_DISABLED 0

Compatible with 90-70 and 90-30 except that Microcycle (90-70) is not
supported.

 T_INT32 PLCC_read_window_values(struct read_window_values_rec *x);

/* Read Window Values.*/

/* window modes */

#define LIMITED_MODE 0

#define CONSTANT_MODE 1

#define RUN_TO_COMPLETION_MODE 2

/* structure with return values */

struct read_window_values_rec{

 T_BYTE controller_win_time;

 T_BYTE controller_win_mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

 T_BYTE backplane_comm_win_time;

 T_BYTE backplane_comm_win_mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

 T_BYTE background_win_time;

 T_BYTE background_win_mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /*
RUN_TO_COMPLETION_MODE */

};

Compatible with the 90-70 and 90-30 except that structure member
names with the “prog_” suffix now use the “controller_” suffix and those
that use the “sys_” suffix now use the “backplane_” suffix. This is to make
the names consistent with the PACSystems terminology.

Appendix A. Target Library Functions

202 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_change_controller_comm_window (struct
change_controller_comm_window_rec *x);

/* Change Controller Communications Window State and Values */

/* input structure */

struct change_controller_comm_window_rec{

 T_BYTE time;

 T_BYTE mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

};

/* window modes */

#define LIMITED_MODE 0

#define CONSTANT_MODE 1

#define RUN_TO_COMPLETION_MODE 2

Compatible with the 90-70 and 90-30, except that function and
structure names containing “prog_” now use the “controller_”. This
makes the names consistent with the PACSystems terminology.

 T_INT32 PLCC_change_backplane_comm_window (struct
change_backplane_comm_window_rec *x);

/* Change Backplane Communications Window State and Values*/

struct change_system_comm_window_rec{

 T_BYTE time;

 T_BYTE mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

};

Compatible with the 90-70 and 90-30, except that function and
structure names containing “system_” now use the “backplane_” This
makes the names consistent with the PACSystems terminology.

 T_INT32 PLCC_change_background_window (struct
change_background_window_rec *x);

/* Change Background Window State and Values. */

struct change_background_window_rec{

 T_BYTE time;

 T_BYTE mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

};

Compatible with 90-70 and 90-30 libraries.

 T_INT32 PLCC_number_of_words_in_chksm(struct
number_of_words_in_chksm_rec *x);

/* Set/Read Number of Words to Checksummed */

struct number_of_words_in_chksm_rec{

 T_WORD read_set;

 T_WORD word_count; /* number of words checksummed */

};

#define READ_CHECKSUM_WORDS 0

#define SET_CHECKSUM_WORDS 1

Compatible with 90-70 and 90-30 libraries.

Appendix A. Target Library Functions

GFK-2259F October 2017 203

 T_INT32 PLCC_tod_clock(struct tod_clock_rec *x);

/*Change/Read Time-of-Day Clock State and Values */

#define NUMERIC_DATA_FORMAT 0

#define BCD_FORMAT 1

#define UNPACKED_BCD_FORMAT 2

#define PACKED_ASCII_FORMAT 3

#define POSIX_FORMAT 4

#define NUMERIC_DATA_FORMAT_4_DIG_YR 0x80
#define BCD_FORMAT_4_DIG_YR 0x81
#define UNPACKED_BCD_FORMAT_4_DIG_YR 0x82
#define PACKED_ASCII_FORMAT_4_DIG_YR 0x83

#define SUNDAY 1

#define MONDAY 2

#define TUESDAY 3

#define WEDNESDAY 4

#define THURSDAY 5

#define FRIDAY 6

#define SATURDAY 7

struct num_tod_rec{

 T_WORD year;

 T_WORD month;

 T_WORD day_of_month;

 T_WORD hours;

 T_WORD minutes;

 T_WORD seconds;

 T_WORD day_of_week;

};

struct BCD_tod_rec{

 T_BYTE year;

 T_BYTE month;

 T_BYTE day_of_month;

 T_BYTE hours;

 T_BYTE minutes;

 T_BYTE seconds;

 T_BYTE day_of_week;

 T_BYTE null;

};

struct BCD_tod_4_rec{

 T_BYTE year_lo;

 T_BYTE year_hi;

 T_BYTE month;

 T_BYTE day_of_month;

 T_BYTE hours;

 T_BYTE minutes;

 T_BYTE seconds;

 T_BYTE day_of_week;

};

struct unpacked_BCD_rec{

 T_BYTE yearlo;

 T_BYTE yearhi;

 T_BYTE monthlo;

 T_BYTE monthhi;

 T_BYTE day_of_month_lo;

 T_BYTE day_of_month_hi;

 T_BYTE hourslo;

 T_BYTE hourshi;

 T_BYTE minslo;

 T_BYTE minshi;

 T_BYTE secslo;

 T_BYTE secshi;

 T_WORD day_of_week;

};

Compatible with 90-70 and 90-30 libraries. Some additional formats at

available on PACSystems such as BCD_tod_4_rec,
unpacked_bcd_tod_4_rec and ascii_tod_4_rec.

Appendix A. Target Library Functions

204 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

struct unpacked_bcd_tod_4_rec{

 T_WORD huns_year;

 T_WORD tens_year;

 T_WORD month;

 T_WORD day_of_month;

 T_WORD hours;

 T_WORD minutes;

 T_WORD seconds;

 T_WORD day_of_week;

};

struct ASCII_tod_rec{

 T_BYTE yearhi;

 T_BYTE yearlo;

 T_BYTE space1;

 T_BYTE monthhi;

 T_BYTE monthlo;

 T_BYTE space2;

 T_BYTE day_of_month_hi;

 T_BYTE day_of_month_lo;

 T_BYTE space3;

 T_BYTE hourshi;

 T_BYTE hourslo;

 T_BYTE colon1;

 T_BYTE minshi;

 T_BYTE minslo;

 T_BYTE colon2;

 T_BYTE secshi;

 T_BYTE secslo;

 T_BYTE space4;

 T_BYTE day_of_week_hi;

 T_BYTE day_of_week_lo;

};

struct ascii_tod_4_rec{

 T_BYTE hun_year_hi;

 T_BYTE hun_year_lo;

 T_BYTE year_hi;

 T_BYTE year_lo;

 T_BYTE space1;

 T_BYTE month_hi;

 T_BYTE month_lo;

 T_BYTE space2;

 T_BYTE day_of_month_hi;

 T_BYTE day_of_month_lo;

 T_BYTE space3;

 T_BYTE hours_hi;

 T_BYTE hours_lo;

 T_BYTE colon1;

 T_BYTE minutes_hi;

 T_BYTE minutes_lo;

 T_BYTE colon2;

 T_BYTE seconds_hi;

 T_BYTE seconds_lo;

 T_BYTE space4;

 T_BYTE day_of_week_hi;

 T_BYTE day_of_week_lo;

};

#define READ_CLOCK 0

#define WRITE_CLOCK 1

The union must be named as required by the GNU C compiler. Therefore,
to get access to a particular member in the "record" union of the
tod_clock_rec structure, the following syntax must be used:

 todClockRec.record.num_tod.seconds

Appendix A. Target Library Functions

GFK-2259F October 2017 205

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

typedef long int time_t;

struct timespec {

 time_t tv_sec;

 long int tv_nsec;

};

struct tod_clock_rec{

 T_WORD read_write; /* READ_CLOCK or WRITE_CLOCK */

 T_WORD format; /* NUMERIC_DATA_FORMAT, BCD_FORMAT */

 /* UNPACKED_BCD_FORMAT, PACKED_ASCII_FORMAT */

 union {

 struct num_tod_rec num_tod;

 struct BCD_tod_rec BCD_tod;

 struct BCD_tod_4_rec BCD_tod_4;

 struct unpacked_BCD_rec unpacked_BCD_tod;

 struct unpacked_bcd_tod_4_rec unpacked_BCD_tod_4;

 struct ASCII_tod_rec ASCII_tod;

 struct ascii_tod_4_rec ASCII_tod_4;

 struct timespec POSIX_tod;

 };

};

 T_INT32 PLCC_tod_clock_with_status(struct tod_clock_with_status_rec
*x);Not Supported.

 T_INT32 PLCC_reset_watchdog_timer(void);

/* Reset Watchdog Timer */

Compatible with 90-70 and 90-30 libraries.

 T_int32 PLCC_time_since_start_of_sweep(struct
time_since_start_of_sweep_rec *x);

/* Read Sweep Time from the Beginning of Sweep */

struct time_since_start_of_sweep_rec{

 T_WORD time_since_start_of_sweep;

};

Compatible with 90-70 and 90-30 libraries.

 T_INT32 PLCC_nano_time_since_start_of_sweep(struct
nano_time_since_start_of_sweep_rec *x);

/* Read Sweep Time in nanoseconds from the Beginning of Sweep */

struct nano_time_since_start_of_sweep_rec{

 T_DWORD time_since_start_of_sweep;

};

New function. Provides time in nanosecond units.

 T_INT32 PLCC_read_folder_name(struct read_folder_name_rec *x);

/* Read Folder Name */

struct read_folder_name_rec{

 char folder_name[32]; /* NULL terminated */

};

Change in number of characters in name to 32 including the NULL
terminator.

 T_INT32 PLCC_read_PLC_ID(struct read_PLC_ID_rec *x);

/* Read PLC ID */

struct read_PLC_ID_rec{

 char PLC_ID[8]; /* NULL terminated */

};

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_read_PLC_state(struct read_PLC_state_rec *x);

/* Read PLC Run State */

#define RUN_DISABLED 1

#define RUN_ENABLED 2

struct read_PLC_state_rec{

 T_WORD state;

};

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_shut_down_plc(T_WORD numberOfSweeps);

/* Shut Down PLC */

Compatible with the 90-70 and 90-30 except the function takes an input

parameter, number of sweeps, that indicates the number of full sweeps
to execute after the function is called.

Appendix A. Target Library Functions

206 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_mask_IO_interrupts(struct mask_IO_interrupts_rec *x);

/* Mask/Unmask I/O Interrupt */

struct mask_IO_interrupts_rec{

 T_WORD mask; /* MASK or UNMASK */

 T_WORD memory_type;

 T_WORD memory_address;

};

#define MASK 1

#define UNMASK 0

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_mask_IO_interrupts_ext (struct mask_IO_interrupts_ext_rec *x);

struct mask_IO_interrupts_ext_rec{

 T_WORD action; /* MASK or UNMASK */

 T_WORD memory_type; /* Address of input interrupt trigger */

 T_DWORD memory_offset;

};

Not supported by Series 90.

Supported by PACSystems Release 3.5 or greater.

 T_INT32 PLCC_read_IO_override_status(struct read_IO_override_status_rec *x);

/* Read I/O Override Status */

struct read_IO_override_status_rec{

 T_WORD override_set;

};

#define OVERRIDES_SET 1

#define NO_OVERRIDES_SET 0

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_set_run_enable(struct set_run_enable_rec *x);

/* Set Run Enable/Disable */

#define RUN_DISABLED 1

#define RUN_ENABLED 2

struct set_run_enable_rec{

 T_WORD enable;

};

Compatible with 90-70.

 T_INT32 PLCC_mask_timed_interrupts(struct mask_timed_interrupts_rec *x);

/* Mask/Unmask Timed Interrupts */

struct mask_timed_interrupts_rec{
 T_WORD action; /* READ_INTERRUPT_MASK or WRITE_INTERRUPT_MASK */
 T_WORD status; /* if action is READ_INTERRUPT_MASK then this */
 /* field has MASK or UNMASK as the return value */
 /* if the action is WRITE_INTERRUPT_MASK then */
 /* set this field to MASK or UNMASK */
};

;

#define READ_INTERRUPT_MASK 0

#define WRITE_INTERRUPT_MASK 1

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_sus_res_HSC_interrupts(struct sus_res_HSC_interrupts_rec *x);

/* Suspend/Resume High Speed Counter Interrupts */

#define SUSPEND 1

#define RESUME 0

#define I_BIT 70

#define AI_MEM 10

struct sus_res_HSC_interrupts_rec{

 T_WORD action; /* SUSPEND or RESUME */

 T_WORD memory_type;

 T_WORD reference_address;

};

Compatible with 90-70 and 90-30.

Appendix A. Target Library Functions

GFK-2259F October 2017 207

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_sus_res_interrupts_ext(struct sus_res_interrupts_ext_rec *x);

struct sus_res_interrupts_ext_rec{

 T_WORD action; /* SUSPEND or RESUME */

 T_WORD memory_type; /* Address of the interrupt trigger */

 T_DWORD memory_offset;

};

Not supported by Series 90.

Supported by PACSystems Release 3.5 or greater.

 int PLCC_acc_mem (struct plcc_mem_acc_rec *mem_acc_rec_ptr);

Not Supported since bulk memory is supported directly through %W
memory type.

T_INT32 PLCC_get_escm_status (struct escm_status_rec *);

/* Function PLCC_get_escm_status */

struct escm_status_rec {

 T_WORD port_number;

 T_WORD port_status;

};

Compatible with 90-70 except the function will always return 0 (escm
not available or unsupported) for this release of PACSystems because
the ESCM is not present.

T_INT32 PLCC_set_application_redundancy_mode(T_WORD mode);

/* Possible values for the backup mode. */

#define BACKUP_MODE 0

#define ACTIVE_MODE 1

Not supported by Series 90.

Supported by PACSystems Release 5.0 or greater.

Appendix A. Target Library Functions

208 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

A-4 Target Library VME Functions, Structures and Constants

Implemented in ctkPlcBus.h – Compatible with Rx7 only

Target Library VME Functions, Structures and
Constants

90-70 PLC Library Compatibility Notes & Issues

 byte PLCC_VME_set_amcode(byte amcode) function is not supported since the
PACSystems system uses rack, slot, sub-slot, region to address VME memory.

T_INT32 PLCC_BUS_read_byte(T_WORD rack, T_WORD slot,
T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_BYTE
*value, T_DWORD address);

/* Read a byte from the VME bus.*/

Similar function as the 90-70 but the function now has four additional input parameters,
rack, slot, sub-slot and region, that specify the VME memory access. In addition, the
functions now have a status parameter and the name uses “BUS” instead of “VME” to
make the function more general (i.e. the same code could be used on various
PACSystems CPUs)

T_INT32 PLCC_BUS_read_word(T_WORD rack, T_WORD slot,
T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_WORD
*value, T_DWORD address);

/* Read a word from the VME bus.*/

T_INT32 PLCC_BUS_read_block(T_WORD rack, T_WORD slot,

T_WORD subSlot, T_WORD region, T_WORD *pStatus, void
*buffer, T_WORD length, T_DWORD address);

/* Read a block from the VME bus*/

T_INT32 PLCC_BUS_write_byte(T_WORD rack, T_WORD slot,
T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_BYTE
value, T_DWORD address);

/* Write a byte to the VME bus*/

T_INT32 PLCC_BUS_write_word(T_WORD rack, T_WORD slot,

T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_WORD
value, T_DWORD address);

/* Write a word to the VME bus.*/

T_INT32 PLCC_BUS_write_block(T_WORD rack, T_WORD slot,
T_WORD subSlot, T_WORD region, T_WORD *pStatus, void
*buffer, T_WORD length, T_DWORD address);

/* Write a block of data to the VME bus*/

word PLCC_VME_config_read(void *buffer, word length, byte rack, byte slot, unsigned
long offset); Not supported.

word PLCC_VME_config_write(void *buffer, word length, byte rack, byte slot, unsigned
long offset); Not supported.

T_INT32 PLCC_BUS_RMW_byte (T_WORD rack, T_WORD slot,

T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_DWORD
*pOriginalValue, T_BYTE op_type, T_BYTE mask, T_DWORD
address);

/* Read Modify Write a byte to the VME bus */

#define BUS_OR 1

#define BUS_AND 0

Similar function as the 90-70 but the function now has four additional input parameters,

rack, slot, sub-slot and region, that specify the VME memory access. In addition, the
functions now have a status parameter and the name uses “BUS” instead of “VME” to
make the function more general (i.e. the same code could be used on various
PACSystems CPUs)

T_INT32 PLCC_BUS_RMW_word (T_WORD rack, T_WORD slot,

T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_DWORD
*pOriginalValue, T_BYTE op_type, T_WORD mask, T_DWORD
address);

/* Read Modify Write a word to the VME bus */

#define BUS_OR 1

#define BUS_AND 0

T_INT32 PLCC_BUS_TST_byte (T_WORD rack, T_WORD slot,
T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_BYTE
*semaphore_output, T_DWORD address);

/* Test and set a byte on the VME bus*/

T_INT32 PLCC_BUS_TST_word (T_WORD rack, T_WORD slot,
T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_WORD
*semaphore_output, T_DWORD address);

/* Test and set a word on the VME bus*/

T_INT32 PLCC_BUS_read_dword(T_WORD rack, T_WORD slot,

T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_DWORD
*value, T_DWORD address);

/* Read a dword from the VME bus.*/

New Bus function for 32-bit access

Appendix A. Target Library Functions

GFK-2259F October 2017 209

Target Library VME Functions, Structures and
Constants

90-70 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_BUS_write_dword(T_WORD rack, T_WORD slot,
T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_DWORD
value, T_DWORD address);

/* Write a dword to the VME bus*/

New Bus function for 32-bit access

T_INT32 PLCC_BUS_RMW_dword(T_WORD rack, T_WORD slot,

T_WORD subSlot, T_WORD region, T_WORD *pStatus, T_DWORD
*pOriginalValue, T_BYTE op_type, T_DWORD mask, T_DWORD
address);

/* Read Modify Write a dword to the VME bus */

#define BUS_OR 1

#define BUS_AND 0

New Bus function for 32-bit access

Appendix A. Target Library Functions

210 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

A-5 Target Library Error Functions, Structures and Constants

Implemented in ctkPlcErrno.h

Target Library Error Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

void PLCC_ClearErrno(void); This is a new function. It clears the errno in the current context.
As a general rule, this function should be called just before
calling a function whose status will be checked by using
PLCC_GetErrno. If this is not done, the Errno value could be the
result of previous function call.

int PLCC_GetErrno(void) This is a new function. It returns the errno in the current
context. errno contains the error code set by the last Target
Library or C Run Time Library function to declare an error.

Appendix A. Target Library Functions

GFK-2259F October 2017 211

A-6 Target Library Utility Functions, Structures and Constants

Implemented in ctkPlcUtil.h

Target Library Utility Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

T_WORD PLCC_Crc16Checksum

(T_BYTE *pFirstByte,

T_DWORD length,

T_WORD currentCrcValue);

This is a new function. It calculates a CRC16 checksum over the
given area with the given starting value and length in bytes.
The currentCrcValue is normally 0. When checking a large
memory range section by section, one can use the previous
section's CRC value as the initial value.

Errnos:

TLIB_ERRNO_UTIL_NULL_POINTER

GFK-2259F October 2017 213

Appendix B C Run-Time Library Functions

The library functions listed in this appendix do not set errno, unless otherwise indicated.

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

#include <stdio.h> Input/Output: The Series 90-70 function, printf() is not
supported on the target and will return
GEF_ERROR. The following lines provide
equivalent printf functionality:

char buffer[100];
T_INT32 numBytes;

numBytes=sprintf(buffer, "my Message\r\n");
PLCC_MessageWrite(PORT1, buffer, numBytes);

When debugging on the PC, printf is supported
or you can use the sprintf/ PLCC_MessageWrite
combination shown above.

#include <stdio.h> int sprintf(char*, const char* format, ...);

#include <stdio.h> int sscanf (const char* string, const
char* format, ...);

New function to PACSystems; i.e. it was not
supported on Series 90 PLCs.

Appendix B. C Run-Time Library Functions

214 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

#include <math.h> Math: Note for the following Math functions:

+-NAN is 0x7ff8000000000000 &
0xfff8000000000000 respectively for a double
value.

+-Infinity is 0x7ff0000000000000 and
0xfff0000000000000 respectively for a double
value.

+-NAN is 0x7f8xxxxx and 0xff8xxxxx respectively
where xxxxx is non-zero for a float value.

+-Infinity is 0x7f800000 and 0xff800000
respectively for a float value.

#include <math.h> double acos(double); (64-bit),

float acosf(float); (32-bit)

acos() (32-bit) on the 90-70 is functionally
equivalent to acosf() on PACSystems.

acosl() (80 bits) is not supported.

Similar compatibility issues exist for the other
math functions.

Errno exception: EDOM is not set by this function
and returns “not a number” +-NAN if outside the
range of –1 to 1

#include <math.h> double asin(double),

float asinf(float) ;

asinl() is not supported

Errno exception: EDOM is not set by this function
and returns “not a number” +-NAN if outside the
range of –1 to 1

#include <math.h> double atan(double),

float atanf(float);

atanl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

NA _cabs() is not supported.

NA _cabsl() is not supported.

#include <math.h> double ceil(double),

float ceilf(float);

ceill() is not supported

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns +-Infinity respectively.

#include <math.h> double cos(double),

float cosf(float);

cosl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns –NAN.

#include <math.h> double cosh(double),

float coshf(float);

coshl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns +NAN.

#include <math.h> double exp(double),

float expf(float);

expl() is not supported.

Errno exceptions: ERANGE or EDOM are not set
by this function and the functions returns +NAN
when the input is +Infinity or +-NAN. The function
returns +Infinity if the input is -Infinity.

Appendix B. C Run-Time Library Functions

GFK-2259F October 2017 215

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

#include <math.h> double fabs(double),

float fabsf(float);

fabsl() is not supported.

Errno & return exceptions:

EDOM and ERANGE are not set.

A +- Infinity input returns a +Infinity value.

A +- NAN input returns a +NAN value.

#include <math.h> double floor(double),

float floorf(float);

floorl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns +-Infinity respectively.

#include <math.h> double fmod(double x , double y),

float fmodf(float x, float y);

fmodl() is not supported.

Errno & return value exceptions:

EDOM is not set.

If y = 0, the return value is +NAN.

#include <math.h> double frexp(double x, int *y) ; frexpl() is not supported

Errno: sets EDOM for x = +-NAN or +-Infinity.

NA _hypot is not supported .(calculates the
hypotenuse).

NA _hypotl is not supported.

#include <math.h> double ldexp(double x, int y); ldexpl is not supported.

Errno: set errno to EDOM for x +-NAN and
ERANGE for x +-Infinity.

Caution: setting y > 65535 could cause the PLC
watchdog to time out.

#include <math.h> double log(double x),

float logf(float x);

logl() is not supported.

Errno and return exceptions:

EDOM is not set for a negative input. ERANGE is
not set for an input of 0.

x < 0 returns –NAN

x=+Infinity returns +Infinity

x=0 returns –Infinity

x=+-NAN returns +-NAN respectively.

#include <math.h> double log10(double x),

float log10f(float x);

log10l() is not supported

Errno and return exceptions:

EDOM is not set for a negative input. ERANGE is
not set for an input of 0.

x < 0 returns –NAN

x=+Infinity returns +Infinity

x=0 returns –Infinity

x=+-NAN returns +-NAN respectively.

#include <math.h> double modf(double, double *) modfl() is not supported.

Appendix B. C Run-Time Library Functions

216 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

#include <math.h> double pow(double x, double y),

float powf(float x, float y);

powl() is not supported.

Errno & return exceptions:

When x=0 and y=0, EDOM is not set and the
return value is 1.0

When x=0 and y<0, EDOM is not set and the
return value is Positive Infinity

When x<0 and y is non-integer, EDOM is not set
and the functions returns 0.

#include <math.h> double sin(double),

float sinf(float);

sinl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns –NAN.

#include <math.h> double sinh(double),

float sinhf(float);

sinhl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns +-Infinity respectively.

#include <math.h> double sqrt(double x),

float sqrtf(float x);

sqrtl() is not supported.

Errno & return exceptions:

EDOM is not set for the following conditions.

When x<0, the return value is –NAN.

When x = +Infinity, the return value is +Infinity
respectively.

When x = +-NAN, the return value is +-NAN.

#include <math.h> double tan(double x),

float tanf(float x);

tanl() is not supported.

Errno is not set by this function.

Return exceptions:

When x = +-NAN, the return value is +-NAN
respectively.

When x = +-Infinitiy, the return value is –NAN.

#include <math.h> double tanh(double x),

float tanhf(float x);

tanhl() is not supported.

Errno is not set by this function.

Return exceptions:

When x = +-NAN, the return value is +-NAN
respectively.

#include <stdlib.h> Math:

void div_r(

 int numerator,

 int denominator,

 div_t * divStructPtr

)

typedef struct {

 int quot;

 int rem;

} div_t

div() is not supported because it is not re-entrant.

Description: This routine computes the quotient
and remainder of numer/denom. The quotient
and remainder are stored in the div_t structure
pointed to by divStructPtr.

This function does not set errno.

Denominator = 0 will cause a divide by 0 fault
and put the CPU into CPU Halted mode.

#include <stdlib.h> ldiv() is not supported because it is not re-
entrant.

Appendix B. C Run-Time Library Functions

GFK-2259F October 2017 217

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

NA _lrotl, _lrotr are not supported (long rotate left
and right respectively).

#include <ctkGefCLib.h> max(a,b), min(a,b) max(), min() macros are supported in the GefCLib
library via macros in the header file. max()
returns the greater of two numbers and min()
returns the smaller of two numbers.

These macros do not set errno.

#include <stdlib.h> int rand(void) This function does not set errno.

NA _rotl, _rotr are not supported (int rotate left and
right respectively).

#include <stdlib.h> void srand(unsigned int seed)) This function does not set errno.

#include <stdlib.h> Data Conversion:

int abs(int)

This function does not set errno.

Return exceptions:

For an input value of –2147483648, the return
value is –2147483648.

#include <stdlib.h> double atof(const char *) Sets errno if the input cannot be represented as
a 64-bit floating point number. (For ex. numbers
significantly outside +-1.79e308 range.

Note: numbers just beyond this range will return
+-Infinity but will not set errno)

#include <stdlib.h> int atoi(const char *) Sets errno if the input cannot be represented as
a 32-bit signed integer. (For example, numbers
outside -2147483648 to +2147483647 range)

#include <stdlib.h> long atol(const char *) Sets errno if the input cannot be represented as
a 32-bit signed integer. (For example, numbers
outside -2147483648 to +2147483647 range)

NA _itoa() (Convert an integer to a string) is not
supported.

#include <stdlib.h> long labs(long) This function does not set errno.

NA _ltoa() (Convert a long integer to a string) is not
supported.

#include <stdlib.h> long strtol(const char *, char ** endptr,
int base)

Sets errno if the input cannot be represented as
a 32-bit signed integer. (For example, numbers
outside -2147483648 to +2147483647 range).

#include <stdlib.h> unsigned long strtoul(const char *, char
** endptr, int base)

Sets errno if the input cannot be represented as
a 32-bit unsigned integer. (For example,
numbers outside -0 to 4294967295 range)

NA _ultoaConvert an unsigned long integer to a
string) is not supported

#include <stdlib.h> Search:

void *bsearch(const void *key, const
void * base,

size_t nmemb,

size_t size,

 int (* compar)

 (const void *, const void *))

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

Appendix B. C Run-Time Library Functions

218 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

#include <stdlib.h> qsort(void * base,

size_t nmemb,

size_t size,

int(*_compar)(const void *, const void *))

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

NA Search:

_lfind() (Performs a linear search for the specified
key). Not supported.

NA _lsearchPerforms a linear search for a value;
adds to end of list if not found). Not supported.

#include <string.h> String Manipulation:

char *strcat(char *, const char *)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> char *strchr(const char *, int) This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> int strcmp(const char *, const char *) This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> char *strcpy(char *, const char *) This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> size_t strcspn(const char *, const char
*)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> char *strerror_r(

 int errorcode,

 char *stringBuffer

)

strerror() and _strerror() are not supported since
they are not re-entrant

Description: This routine maps the error number
in errcode to an error message string. It stores
the error string in buffer. The function returns
GEF_OK or GEF_ERROR. GEF_ERROR is returned if
a NULL pointer is passed as the input for
stringBuffer.

Errno is not set.

NA _stricmp() (Perform a lowercase comparison of
strings) is not supported.

#include <string.h> size_t strlen(const char *) This function does not set errno.

Note: NULL or invalid input pointer to this
function will put the CPU into CPU Halted mode.

NA _strlwr() (Convert a string to lowercase) is not
supported.

#include <string.h> char *strncat(char *, const char *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> int strncmp(const char *, const char *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

Appendix B. C Run-Time Library Functions

GFK-2259F October 2017 219

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

#include <string.h> char *strncpy(char *, const char *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

NA _strnicmp() (Compare characters of two strings
without regard to case) is not supported.

NA _strnset() (Initialize characters of a string to a
given format.) is not supported.

#include <string.h> char *strpbrk(const char *, const char *) This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> char *strrchr(const char *, int) This function does not set errno.

Note: NULL or invalid input pointer to this
function will put the CPU into CPU Halted mode.

NA _strrev() (Reverse characters of a string) is not
supported.

NA _strset() (Set characters of a string to a
character) is not supported.

#include <string.h> size_t strspn(const char *, const char *) This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> char *strstr(const char *, const char *) This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

Appendix B. C Run-Time Library Functions

220 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

#include <string.h> char *strtok_r(

 char * string,

 const char * separators,

 char ** ppLast

)

strtok() and _fstrtok() are not supported since
they are not re-entrant

Description:

This routine considers the null-terminated string
as a sequence of zero or more text tokens
separated by spans of one or more characters
from the separator string separators. The
argument ppLast points to a user-provided
pointer which in turn points to the position within
string at which scanning should begin.

In the first call to this routine, string points to a
null-terminated string; separators points to a
null-terminated string of separator characters;
and ppLast points to a NULL pointer. The
function returns a pointer to the first character
of the first token, writes a null character into
string immediately following the returned token,
and updates the pointer to which ppLast points
so that it points to the first character following
the null written into string. (Note that because
the separator character is overwritten by a null
character, the input string is modified as a result
of this call.)

In subsequent calls string must be a NULL
pointer and ppLast must be unchanged so that
subsequent calls will move through the string,
returning successive tokens until no tokens
remain. The separator string separators may be
different from call to call. When no token
remains in string, a NULL pointer is returned. This
function returns a pointer to the first character
of a token, or a NULL pointer if there is no token.

NA _strupr() (Converts any lowercase characters in
the specified string to uppercase) is not
supported.

#include < PLCC9070.h> _fstrcat() _fstrchr() _fstrcmp() _fstrcpy()
_fstrcspn() _fstrlen _fstrncat()
_fstrncmp() _fstrncpy()_fstrpbrk()
_fstrrchr()_fstrspn() _fstrstr()

_fstrcat() _fstrchr() _fstrcmp() _fstrcpy() _fstrcspn()
_fstrlen _fstrncat() _fstrncmp()
_fstrncpy()_fstrpbrk() _fstrrchr()_fstrspn() _fstrstr()

These functions are far pointer versions of
functions without the “_f” prefix. Since far pointer
versions are not needed for a 32-bit architecture,
PLCC9070.h equates these functions to the
primary functions with the following type of
statement:

#define _fstrcat strcat

#include < PLCC9030.h> _fstrcat() _fstrchr() _fstrcmp()

_fstrcpy() _fstrcspn() _fstrlen()

_fstrncat() _fstrncmp() _fstrncpy()

_fstrpbrk() _fstrrchr() _fstrspn()

_fstrstr() _fmemchr() _fmemcmp()

_fmemcpy() _fmemmove()

_fmemset()

These functions are far pointer versions of
functions without the “_f” prefix. Since far pointer
versions are not needed for a 32-bit architecture,
PLCC9030.h equates these functions to the
primary functions with the following type of
statement:

#define _fstrcat strcat

Appendix B. C Run-Time Library Functions

GFK-2259F October 2017 221

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

NA _fstricmp() _fstrlwr() _fstrnicmp() _fstrnset()
_fstrrev() _fstrset() _fstrtok _fstrupr

These functions are not supported.

#include <string.h> Buffer Manipulation:

NA

_memccpyCopies characters from a buffer) is
not supported..

#include <string.h> void *memchr(const void *, int, size_t) This function does not set errno.

Note: NULL or invalid input pointer to this
function will put the CPU into CPU Halted mode.

#include <string.h> int memcmp(const void *, const void *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> void * memcpy(void *, const void *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

NA _memicmp() - compares characters in two
buffers (case-insensitive) - is not supported.

#include <string.h> void * memmove(void *, const void *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <string.h> void * memset(void *, int, size_t) This function does not set errno.

Note: NULL or invalid input pointer to this
function will put the CPU into CPU Halted mode.

#include <GefCLib.h> void _swab(char *source, char
*destination, int nbytes)

_swab() swap “nbytes” bytes from the “source”
buffer (swaps even and odd bytes) and copies
the result to the “destination” buffer where
buffers do not have to be aligned on even byte
boundaries. If ”nbytes” is not an odd number, the
function will swap nbytes+1. Supported in
GefCLib.h with the following statement:

#define _swab uswab

This function does not return errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include < PLCC9070.h> _fmemchr, _fmemcmp, _fmemcpy,
_fmemmove, _fmemset

_fmemchr, _fmemcmp, _fmemcpy,
_fmemmove, _fmemset

These functions are far pointer versions of
functions without the “_f” prefix. Since far pointer
versions are not needed for a 32-bit architecture,
PLCC9070.h equates these functions to the
primary functions with the following type of
statement:

#define _fmemcpy memcpy

Appendix B. C Run-Time Library Functions

222 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

#include < PLCC9030.h> _fmemchr, _fmemcmp, _fmemcpy,
_fmemmove, _fmemset

_fmemchr, _fmemcmp, _fmemcpy,
_fmemmove, _fmemset

These functions are far pointer versions of
functions without the “_f” prefix. Since far pointer
versions are not needed for a 32-bit architecture,
PLCC9030.h equates these functions to the
primary functions with the following type of
statement:

#define _fmemcpy memcpy

NA _fmemccpy, _fmemicmp

These functions are not supported.

#include <string.h> Internationalization:

int strcoll(const char *, const char *)

This function does not return errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <time.h> Time Internationalization:

size_t strftime(char *_s, size_t _maxsize,
const char *_fmt, const struct tm *_t)

This function does not return errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <time.h> Time:

int asctime_r(

 const struct tm * timeptr,

 char * asctimeBuf,

 size_t * buflen

)

asctime() is not supported since it is not re-
entrant

Description:

This routine converts the broken-down time
pointed to by timeptr into a string of the form:

SUN SEP 16 01:03:52 1973\n\0

The string is copied to asctimeBuf.

This function returns the size of the created
string.

This function does not return errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted mode.

#include <time.h> double difftime(time_t _time2, time_t
_time1)

This function does not set errno.

NA _strdate() (Copy a date to a buffer) is not
supported.

NA _strtime() (Copy the time to a buffer) is not
supported.

#include <ctype.h> Character Classification and
Conversion:

isalnum()

#include <ctype.h> int isalpha(int c)

NA isascii() is not supported.

#include <ctype.h> int iscntrl(int c)

#include <ctype.h> int isdigit(int c)

#include <ctype.h> int isgraph(int c)

#include <ctype.h> int islower(int c)

Appendix B. C Run-Time Library Functions

GFK-2259F October 2017 223

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library Compatibility
Notes, Issues, Errno information and return

value exceptions

#include <ctype.h> int isprint(int c)

#include <ctype.h> int ispunct(int c)

#include <ctype.h> int isspace(int c)

#include <ctype.h> int isupper(int c)

#include <ctype.h> int isxdigit(int c)

#include <ctkGefCLib.h> int toascii(int c)

#include <ctype.h> int tolower(int c) _tolower() is not supported; use tolower()

#include <ctype.h> int toupper(int c) _toupper() is not supported use toupper().

GFK-2259F October 2017 225

Appendix C Diagnostics

This section includes descriptions of some known problems and solutions to those problems.

C-1 Issue: Compiler issues the following warning when the
EnableAnsi flag is used:

myCBlock.c:240: warning: implicit declaration of function `infinity'

myCBlock.c:263: warning: implicit declaration of function `acosf'

myCBlock.c:264: warning: implicit declaration of function `asinf'

myCBlock.c:265: warning: implicit declaration of function `atanf'

myCBlock.c:266: warning: implicit declaration of function `ceilf'

myCBlock.c:267: warning: implicit declaration of function `cosf'

myCBlock.c:268: warning: implicit declaration of function `coshf'

myCBlock.c:269: warning: implicit declaration of function `expf'

myCBlock.c:270: warning: implicit declaration of function `fabsf'

myCBlock.c:271: warning: implicit declaration of function `floorf'

myCBlock.c:272: warning: implicit declaration of function `fmodf'

myCBlock.c:273: warning: implicit declaration of function `logf'

myCBlock.c:274: warning: implicit declaration of function `log10f'

myCBlock.c:275: warning: implicit declaration of function `powf'

myCBlock.c:276: warning: implicit declaration of function `sinf'

myCBlock.c:277: warning: implicit declaration of function `sinhf'

myCBlock.c:278: warning: implicit declaration of function `sqrtf'

myCBlock.c:279: warning: implicit declaration of function `tanf'

myCBlock.c:280: warning: implicit declaration of function `tanhf'

Solution: The warnings are given because these are not supported ANSI functions. However, if you choose,

you can store the C Block to the PLC because these functions are supported in the PLC. To get rid of the

warnings, compile the C Block without the EnableAnsi flag.

C-2 Issue: Compiler issues the following statement: warning:
`HUGE_VAL’ redefined.

Solution: Place the PACRXPLC.h, PACRX3iPLc.h, or PACRX7iPlc.h include file before math.h. This properly

defines HUGE_VAL and prevents redefinition. If the warning is ignored, the C Block may not store

successfully to the PLC due to not being able to resolve a reference used by HUGE_VAL.

Appendix C. Diagnostics

226 PACSystems* C Programmer's Toolkit for PACSystems User's Manual GFK-2259F

C-3 Issue: Compiler issues the following error statement:
undefined reference to `isascii’ when the EnableAnsi flag is
used. In addition, the C Block will not store to the PLC.

Solution: The isascii macro is not supported when compiling with ANSI checking turned on. If the function

is required, you will need to compile without the EnableAnsi flag. The C Block will not store because there

is not a isascii function in the PLC to link with the symbol.

C-4 Issue: On some Windows 2000 PCs, the local DOS Box
Environment "path" variable is not used, resulting in the
compile process failing because the path to the compiler
batch file is not found.

Solution: The problem can be corrected using the following steps:

1. Press Start->Settings->Control Panel

2. Double click on System

3. Click on the "Advanced Tab"

4. Click on the "Environment Variables" button

5. In the System Variables window, scroll to the "Path" variable and click on it to highlight it.

6. Press the Edit button.

7. Add the following text at the end of the current string

”;<PACSystemsInstallLocation>\Compilers\ElfX86;

<PACSystemsInstallLocation>\Compilers\CommonTools;

<PACSystemsInstallLocation>\Targets\PACRX\Compiler;

<PACSystemsInstallLocation>\Targets\DebugPACRX\Compiler;

<PACSystemsInstallLocation>\Targets\PACRX3i\Compiler;

<PACSystemsInstallLocation>\Targets\DebugPACRX3i\Compiler;

<PACSystemsInstallLocation>\Targets\PACRX7i\Compiler;

<PACSystemsInstallLocation>\Targets\DebugPACRX7i\Compiler;

<PACSystemsInstallLocation>\Targets\CommonFiles\CompilerCommon"

where <PACSystemsInstallLocation> is the location of the C Toolkit installation on your machine. For

example, the default installation location is: C:\GE Software\PACSystemsCToolkit

8. Press OK three times to exit from the System Properties application

9. Reboot your PC.

 GE Automation & Controls
Information Centers

Headquarters:
1-800-433-2682 or 1-434-978-5100

Global regional phone numbers
are available on our web site
www.geautomation.com

Additional Resources

For more information, please
visit our web site:

www.geautomation.com

Copyright © 2002-2017 General Electric
Company. All Rights Reserved

*Trademark of General Electric Company.

All other brands or names are property of their
respective holders.

GFK-2259F

http://www.geautomation.com/
http://www.geautomation.com/

	C Programmer's Toolkit for PACSystems User's Manual GFK-2259F
	Table of Contents
	Table of Figures
	Chapter 1 Introduction
	1.1 Revisions in this Manual
	1.2 Documentation
	PACSystems Manuals
	RX3i Manuals
	VersaMax Manuals

	Chapter 2 Installation
	2.1 System Requirements
	2.2 Installing the C Toolkit for PACSystems
	2.2.1 To install the Toolkit

	2.3 Running C Toolkit
	2.4 C Toolkit File Structure
	2.4.1 Directories
	2.4.2 Files

	2.5 Uninstalling C Toolkit

	Chapter 3 Writing a C Application
	3.1 Name Requirements
	3.1.1 File Names
	3.1.2 Reserved Names

	3.2 C Applications in the PACSystems Environment
	3.2.1 Developing a C Block
	3.2.2 C Toolkit Variable Types
	3.2.3 Compiling
	3.2.3.1 Compiling a Single C File
	3.2.3.2 Compiling Multiple C Files
	3.2.3.3 Specifying Compiler Options
	3.2.3.4 Compiling User C Blocks Under an Older Toolkit Version

	3.2.4 Associating a Compiled C Block with the Application Program
	3.2.5 Adding Blocks through the Machine Edition Programmer
	3.2.6 Specifying Parameters
	3.2.7 Scheduling C Blocks
	3.2.8 Using a C Block in an LD or FBD Program
	3.2.9 Using a C Block in an ST Program

	3.3 PACSystems C Block Structure
	3.3.1 Variable Declarations
	3.3.2 Stack Overflow Checking
	3.3.3 Parameter Pointer Validation

	3.4 PLC Reference Memory Access
	Potential consequences:
	Alternatives:
	3.4.2 How to Format a PLC Reference Access Macro
	3.4.3 Bit Macros
	3.4.4 Byte Macros
	3.4.5 Integer/Word Macros
	3.4.6 Double Word/Floating Point Macros
	3.4.7 Double Precision Floating Point Macros
	3.4.8 Reference Memory Size Macros
	3.4.9 Transition, Alarm, and Fault Macros
	3.4.9.1 Transition and Alarm Macros
	Macros for accessing the %I, %Q, %M, %T, %G, %S, and %SA - %SC transition bits
	Macros for accessing the %I, %Q, %M, %T, %G, %S, and %SA - %SC transition bits as bytes
	Macros for accessing the %I, %Q, %AI, %AQ Diagnostic memory
	Definitions used with macros that access Analog Input DIAGNOSTIC memory(s)
	Definitions used with macros that access Analog Output DIAGNOSTIC memory(s)
	Diagnostic memory macros

	Macros for accessing RACK/SLOT/BLOCK fault information

	3.5 Standard Library Routines
	3.5.1 PACSystems Functions
	3.5.2 General PLC Functions
	3.5.2.1 PLCC_read_elapsed_clock
	Description
	InParam pElapsedClockRec
	ReturnVal

	3.5.2.2 PLCC_read_nano_elapsed_clock
	Description
	InParam pNanoElapsedClockRec
	ReturnVal

	3.5.2.3 PLCC_chars_in_printf_q
	3.5.2.4 PLCC_MessageWrite
	Description
	InParam port
	InParam buffer
	InParam numBytes
	ReturnVal
	Errno

	3.5.2.5 Proc PLCC_MessageRead
	Description
	InParam port
	InParam buffer
	InParam numBytes
	ReturnVal
	Errno

	3.5.2.6 Proc PLCC_CharsInMessageWriteQ
	Description
	InParam port
	ReturnVal
	Errno

	3.5.2.7 Proc PLCC_CharsInMessageReadQ
	Description
	InParam port
	ReturnVal
	Errno

	3.5.2.8 PLCC_gen_alarm
	Description
	InParam error_code
	InParam fault_string
	ReturnVal

	3.5.2.9 PLCC_get_plc_version
	Description
	InParam PLC_ver_info
	ReturnVal

	3.5.3 Bus Read/Write Functions
	3.5.3.1 Proc PLCC_BUS_read_byte
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pBuffer
	InParam address
	ReturnVal

	3.5.3.2 Proc PLCC_BUS_read_word
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pBuffer
	InParam address
	ReturnVal

	3.5.3.3 Proc PLCC_BUS_read_dword
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pBuffer
	InParam address
	ReturnVal

	3.5.3.4 Proc PLCC_BUS_read_block
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pBuffer
	InParam length
	InParam address
	ReturnVal

	3.5.3.5 Proc PLCC_BUS_write_byte
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	InParam value
	InParam address
	ReturnVal

	3.5.3.6 Proc PLCC_BUS_write_word
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	InParam value
	InParam address
	ReturnVal

	3.5.3.7 Proc PLCC_BUS_write_dword
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	InParam value
	InParam address
	ReturnVal

	3.5.3.8 Proc PLCC_BUS_write_block
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	InParam pBuffer
	InParam length
	InParam address
	ReturnVal

	3.5.4 BUS Semaphore Functions
	3.5.4.1 PLCC_BUS_RMW_byte
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pOriginalValue
	InParam op_type
	InParam mask
	InParam address
	ReturnVal

	3.5.4.2 Proc PLCC_BUS_RMW_word
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pOriginalValue
	InParam op_type
	InParam mask
	InParam address
	ReturnVal

	3.5.4.3 Proc PLCC_BUS_RMW_dword
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pOriginalValue
	InParam op_type
	InParam mask
	InParam address
	ReturnVal

	3.5.4.4 Proc PLCC_BUS_TST_byte
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam semaphore_output
	InParam address
	ReturnVal

	3.5.4.5 Proc PLCC_BUS_TST_word
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam semaphore_output
	InParam address
	ReturnVal

	3.5.5 Service Request Functions
	3.5.5.1 PLCC_const_sweep_timer
	Description
	In/OutParam pConstSweepTimerRec
	ReturnVal

	3.5.5.2 PLCC_read_window_values
	Description
	OutParam pStatus
	ReturnVal

	3.5.5.3 PLCC_change_controller_comm_window
	Description
	InParam pChangeControllerCommWindowRec
	ReturnVal

	3.5.5.4 PLCC_change_backplane_comm_window
	Description
	InParam pChangeBackplaneCommWindowRec
	ReturnVal

	3.5.5.5 PLCC_change_background_window
	Description
	InParam pChangeBackgroundWindowRec
	ReturnVal

	3.5.5.6 PLCC_number_of_words_in_chksm
	Description
	InParam pNumberOfWordsInChksmRec
	ReturnVal

	3.5.5.7 PLCC_tod_clock
	Data Formats
	Day of the Week Definitions:
	NUMERIC_DATA_FORMAT
	BCD_FORMAT
	UNPACKED_BCD_FORMAT
	PACKED_ASCII_FORMAT

	Description
	In/OutParam pTodClockRec
	ReturnVal

	3.5.5.8 PLCC_reset_watchdog_timer
	Description
	ReturnVal

	3.5.5.9 PLCC_time_since_start_of_sweep
	Description
	InParam pTimeSinceStartOfSweepRec
	ReturnVal

	3.5.5.10 PLCC_nano_time_since_start_of_sweep
	Description
	InParam pNanoTimeSinceStartOfSweepRec
	ReturnVal

	3.5.5.11 PLCC_read_folder_name
	Description
	OutParam pReadFolderNameRec
	ReturnVal

	3.5.5.12 PLCC_read_PLC_ID
	Description
	OutParam pReadPlcIdRec
	ReturnVal

	3.5.5.13 PLCC_read_PLC_state
	Description
	OutParam pReadPlcStateRec
	ReturnVal

	3.5.5.14 PLCC_shut_down_plc
	Description
	InParam numberOfSweeps
	ReturnVal

	3.5.5.15 PLCC_mask_IO_interrupts
	Description
	InParam pMaskIoInterruptsRec
	ReturnVal

	3.5.5.16 PLCC_mask_IO_interrupts_ext
	Description
	InParam pMaskIoInterruptsExtRec
	ReturnVal
	Errno

	3.5.5.17 PLCC_read_IO_override_status
	Description
	OutParam pReadIoOverrideStatusRec
	ReturnVal

	3.5.5.18 PLCC_set_run_enable
	Description
	InParam pSetRunEnableRec
	ReturnVal

	3.5.5.19 PLCC_mask_timed_interrupts
	Description
	In/OutParam pMaskTimedInterruptsRec
	ReturnVal

	3.5.5.20 PLCC_sus_res_HSC_interrupts
	Description
	InParam pSusResHscInterruptsRec
	ReturnVal

	3.5.5.21 PLCC_sus_res_interrupts_ext
	Description
	InParam pSusResInterruptsExtRec
	ReturnVal
	Errno

	3.5.5.22 PLCC_get_escm_status
	Description
	Port_Status for the PLCC_get_escm_status Function
	OutParam pEscmStatusRec
	ReturnVal

	3.5.5.23 PLCC_set_application_redundancy_mode
	Description
	InParam mode
	ReturnVal

	3.5.6 Fault Table Service Request Functions
	3.5.6.1 PLCC_clear_fault_tables
	Description
	InParam x
	ReturnVal

	3.5.6.2 PLCC_read_last_fault
	Description
	InParam x
	Return Data

	3.5.6.3 PLCC_read_fault_tables
	Description
	InParam x
	Return Data

	3.5.6.4 PLCC_read_last_ext_fault
	Description
	InParam x
	ReturnVal

	3.5.6.5 PLCC_read_ext_fault_tables
	Description
	InParam x
	ReturnVal

	3.5.7 Module Communications
	3.5.7.1 PLCC_comm_req
	Description
	InParam pCommReqRec
	ReturnVal

	3.5.8 Ladder Function Blocks
	3.5.8.1 PLCC_do_io
	Description
	InParam pDoIoRec
	ReturnVal

	3.5.8.2 PLCC_do_io_ext
	Description
	InParam pDoIoRec
	ReturnVal
	Errno

	3.5.8.3 PLCC_sus_io
	Description
	ReturnVal

	3.5.8.4 PLCC_scan_set_io
	Description
	InParam pScanSetIo
	ReturnVal

	3.5.9 Miscellaneous General Functions
	3.5.9.1 PLCC_SNP_ID
	Description
	InParam request_type
	InParam id_str_ptr
	ReturnVal

	3.5.9.2 PLCC_read_override
	Description
	InParam seg_sel
	InParam ref_num
	InParam len
	OutParam data
	ReturnVal

	3.5.10 Reference Memory Functions
	3.5.10.1 PLC_VAR_MEM
	3.5.10.2 WritePlcByte
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	InParam msbByte
	ReturnVal
	Errno

	3.5.10.3 ReadPlcByte
	Description
	InParam RefTable
	InParam offset
	InParam msbByte
	ReturnVal
	Errno

	3.5.10.4 WritePlcWord
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	ReturnVal
	Errno

	3.5.10.5 ReadPlcWord
	Description
	InParam RefTable
	InParam offset
	ReturnVal
	Errno

	3.5.10.6 WritePlcInt
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	ReturnVal
	Errno

	3.5.10.7 ReadPlcInt
	Description
	InParam RefTable
	InParam offset
	ReturnVal
	Errno

	3.5.10.8 WritePlcDint
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	ReturnVal
	Errno

	3.5.10.9 ReadPlcDint
	Description
	InParam RefTable
	InParam offset
	ReturnVal
	Errno

	3.5.10.10 WritePlcDouble
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	ReturnVal
	Errno

	3.5.10.11 ReadPlcDouble
	Description
	InParam RefTable
	InParam offset
	ReturnVal
	Errno

	3.5.10.12 PlcMemCopy
	Description
	InParam pDestination
	InParam pSource
	InParam size
	ReturnVal
	Errno

	3.5.10.13 refMemSize
	Description
	InParam RefTable
	ReturnVal
	Errno

	3.5.10.14 setBit
	Description
	InParam RefTable
	InParam offset
	InParam bitNumber
	ReturnVal
	Errno

	3.5.10.15 clearBit
	Description
	InParam RefTable
	InParam offset
	InParam bitNumber
	ReturnVal
	Errno

	3.5.10.16 rackX
	Description
	InParam rackNumber
	ReturnVal
	Errno

	3.5.10.17 slotX
	Description
	InParam rackNumber
	InParam slotNumber
	ReturnVal
	Errno

	3.5.10.18 blockX
	Description
	InParam rackNumber
	InParam slotNumber
	InParam busNumber
	InParam sbaNumber
	ReturnVal
	Errno

	3.5.10.19 rsmb
	Description
	InParam rackNumber
	ReturnVal
	Errno

	3.5.11 Utility Function
	3.5.11.1 PLCC_Crc16Checksum
	Description
	InParam pFirstByte
	InParam length
	InParam currentCrcValue
	ReturnVal
	Errno

	3.5.12 Errno Functions
	3.5.12.1 PLCC_GetErrno
	Description
	ReturnVal

	3.5.12.2 PLCC_ClearErrno
	Description

	3.5.13 PLC Variable Access
	3.5.13.1 Type and Structure Definitions
	PLC_VAR
	Description
	InParam VariableRecord
	InParam PlcVariableName
	Example 1
	Example 2
	Example 3
	Example 4

	PLC Var 'C' Types

	3.5.13.2 Routines
	Proc ReadPlcVar
	Description
	InParam pVarInfo
	InParam pReadTo
	ReturnVal
	Errno

	Proc ReadPlcArrayVarElement
	Description
	InParam pVarInfo
	InParam pReadTo
	InParam numIndices
	InParam <indices>
	ReturnVal
	Errno

	Proc ReadPlcVarDiag
	Description
	InParam pVarInfo
	InParam pReadDiagsTo
	Errno
	Bit Masks to be Used with Diagnostics

	Proc ReadPlcArrayVarElementDiag
	Description
	InParam pVarInfo
	InParam pReadDiagsTo
	InParam numIndices
	InParam <indices>
	Errno
	Bit Masks to be Used with Diagnostics

	Proc ReadPlcVarOvr
	Description
	InParam pVarInfo
	InParam pReadOvrTo
	Errno

	Proc ReadPlcArrayVarElementOvr
	Description
	InParam pVarInfo
	InParam pReadOvrTo
	InParam numIndices
	InParam <indices>
	Errno

	Proc ReadPlcVarTrans
	Description
	InParam pVarInfo
	InParam pReadTransTo
	Errno

	Proc ReadPlcArrayVarElementTrans
	Description
	InParam pVarInfo
	InParam pReadTransTo
	InParam numIndices
	InParam <indices>
	Errno

	Proc WritePlcVar
	Description
	InParam pVarInfo
	InParam pWriteFrom
	ReturnVal
	Errno

	Proc WritePlcArrayVarElement
	Description
	InParam pVarInfo
	InParam pWriteFrom
	InParam numIndices
	InParam <indices>
	ReturnVal
	Errno

	Proc PlcVarMemCopy
	Description
	InParam pDestVarInfo
	InParam pSrcVarInfo
	ReturnVal
	Errno

	Proc PlcVarType
	Description
	InParam pVarInfo
	ReturnVal varType

	Proc PlcVarSizeof
	Description
	InParam pVarInfo
	ReturnVal size

	Proc PlcVarSizeofDiag
	Description
	InParam pVarInfo
	ReturnVal size

	Proc PlcVarSizeofOvr
	Description
	InParam pVarInfo
	ReturnVal size

	Proc PlcVarSizeofTrans
	Description
	InParam pVarInfo
	ReturnVal size

	Proc PlcVarNumDimensions
	Description
	InParam pVarInfo
	ReturnVal numDimensions

	Proc PlcVarHasDiags
	Description
	InParam pVarInfo
	ReturnVal

	Proc PlcVarHasOverrides
	Description
	InParam pVarInfo
	ReturnVal

	Proc PlcVarHasTransitions
	Description
	InParam pVarInfo
	ReturnVal

	Proc PlcVarArrayElementSize
	Description
	InParam pVarInfo
	ReturnVal

	Proc PlcVarArrayBound
	Description
	InParam pVarInfo
	InParam dimension
	ReturnVal

	3.6 Application Considerations
	3.6.1 Application File Names
	3.6.2 Floating Point Arithmetic
	3.6.3 Available Reference Data Ranges
	3.6.3.1 Range Checking Indirect References Using the SIZE Macros

	3.6.4 Global Variable Initialization
	3.6.5 Static Variables
	3.6.6 Data Retentiveness
	Examples:

	3.6.7 GefMain() Parameter Declaration Errors for Blocks
	3.6.7.1 Type Mismatch Errors
	3.6.7.2 Parameter Ordering Errors
	3.6.7.3 Parameter Number Errors

	3.6.8 Uninitialized Pointers
	3.6.9 PLC Local Registers (%P and %L)
	3.6.9.1 %P and %L in Ladder Logic
	Descriptions of %P and %L
	Data Scope of %P and %L

	3.6.10 Block Enable Output (ENO)
	3.6.11 Writes to %S Memory Using SB(x)
	3.6.12 FST_EXE and FST_SCN Macros
	3.6.13 LST_SCN Macro
	3.6.14 Runtime Error Handling
	3.6.15 C Application Impact on PLC Memory
	3.6.16 Blocks as Timed or I/O Interrupt Blocks
	3.6.17 Restricting Compilation to a Specific Target

	Chapter 4 Debugging and Testing C Applications
	4.1 Testing C Applications in the PC Environment
	4.2 Debugging C Applications in the PLC
	4.2.1 Message Mode Debugging
	4.2.2 Reference Table Monitoring

	Chapter 5 Conversion Notes and Series 90 Compatibility
	5.1 Series 90 Compatibility Header Files (PLCC9070.h and PLCC9030.h)
	PLCC9070.h
	PLCC9030.h

	5.2 Writing Directly to Discrete Memory
	5.3 PLC Target Library Function Compatibility Issues
	5.4 Compatibility Issues with Retentive Global Variables
	5.5 “int” Type Issues
	5.6 “enum” Type Issues
	5.7 Non-Standard C Library Functions
	5.8 Entry Point
	5.9 C Standalone Programs
	5.10 Use of Input Parameters as Pointers to Discrete Memory Tables

	Chapter 6 Installed Sample Blocks
	6.1 SampleProj1
	6.2 SampleProj2

	Appendix A Target Library Functions
	A-1 Target Library Reference Memory Functions and Macros
	Implemented in ctkRefMem.h

	A-2 Target Library Fault Table Functions, Structures and Constants
	Implemented in ctkPlcFault.h

	A-3 Target Library General Functions, Structures and Constants
	Implemented in ctkPlcFunc.h

	A-4 Target Library VME Functions, Structures and Constants
	Implemented in ctkPlcBus.h – Compatible with Rx7 only

	A-5 Target Library Error Functions, Structures and Constants
	Implemented in ctkPlcErrno.h

	A-6 Target Library Utility Functions, Structures and Constants
	Implemented in ctkPlcUtil.h

	Appendix B C Run-Time Library Functions
	Appendix C Diagnostics
	C-1 Issue: Compiler issues the following warning when the EnableAnsi flag is used:
	C-2 Issue: Compiler issues the following statement: warning: `HUGE_VAL’ redefined.
	C-3 Issue: Compiler issues the following error statement: undefined reference to `isascii’ when the EnableAnsi flag is used. In addition, the C Block will not store to the PLC.
	C-4 Issue: On some Windows 2000 PCs, the local DOS Box Environment "path" variable is not used, resulting in the compile process failing because the path to the compiler batch file is not found.

